Effect of Mott-Hubbard correlations on the electronic structure and structural stability of uranium dioxide

Abstract The influence of Mott-Hubbard electron-electron correlations on the electronic structure and structural stability of uranium dioxide (UO2) has been analysed using the local spin-density approximation (LSDA) + U approach. We have found that the inclusion of a term describing the Hubbard on-site repulsion between 5f electrons results in a dramatic improvement in the description of the equilibrium electronic and magnetic structure of UO2 for which conventional LSDA calculations incorrectly predict a non-magnetic metallic ground state. We have found that the presence of electron-electron correlations in the 5f band modifies the character of chemical bonding in the material, leading to a Heitler-London type of hybridization between the 5f orbitals and giving rise to a larger value of the equilibrium lattice constant in better agreement with experimental observations.

[1]  J. Hubbard,et al.  Electron correlations in narrow energy bands III. An improved solution , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  B. Johansson,et al.  Electronic structure of transition metal compounds; ground-state properties of the 3d-monoxides in the atomic sphere approximation , 1980 .

[3]  Paxton,et al.  Structural energy-volume relations in first-row transition metals. , 1990, Physical review. B, Condensed matter.

[4]  A. Kotani,et al.  Theory of Core-Level Spectroscopy in Actinide Systems : Chapter 4. Optical Properties : 4-3. Theory , 1993 .

[5]  G. Habermehl,et al.  ReviewPure appl. Chem: Rinehart, K. L., et al. Marine natural products as sources of antiviral, antimicrobial, and antineoplastic Agents. 53, 795 (1981). (K. L. Rinehart, University of Illinois, Urbana, IL 61801, U.S.A.) , 1983 .

[6]  J. Spałek Introduction: Mott insulators, correlated metals, high-temperature superconductors , 1990 .

[7]  D. G. Pettifor,et al.  Bonding and Structure of Molecules and Solids , 1995 .

[8]  P. Erdös,et al.  Lattice distortion and quadrupolar ordering in UO/sub 2/ , 1980 .

[9]  D. Sarma,et al.  Electronic structure of the light actinide oxides from electron spectroscopy (invited) , 1988 .

[10]  C. R. A. Catlow,et al.  The stability of fission products in uranium dioxide , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[11]  G. Briggs,et al.  Scanning tunneling microscopy of the UO2 (111) surface , 1996 .

[12]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[13]  A. J. Arko,et al.  The band structure of UO2: An angle resolved and resonant photoemission study , 1986 .

[14]  Peter Fulde,et al.  Electron correlations in molecules and solids , 1991 .

[15]  Kiyoyuki Terakura,et al.  Band theory of insulating transition-metal monoxides: Band-structure calculations , 1984 .

[16]  G. Lander,et al.  Neutron diffraction study of U O 2 : Antiferromagnetic state , 1976 .

[17]  P. Kelly,et al.  Electronic structure and ground-state properties of the actinide dioxides , 1987 .

[18]  John H. Harding,et al.  The calculation of defect parameters in UO2 , 1986 .

[19]  A. M. Tsvelick,et al.  Exact results in the theory of magnetic alloys , 1983 .

[20]  G. Goodman The electronic structure of actinide dioxides , 1992 .

[21]  Y. Baer,et al.  Electronic structure and Coulomb correlation energy in UO2 single crystal , 1980 .

[22]  B. Cooper,et al.  Neutron-Diffraction Study of UO 2 : Observation of an Internal Distortion , 1975 .

[23]  P. Anderson Theory of Magnetic Exchange Interactions:Exchange in Insulators and Semiconductors , 1963 .

[24]  J. Schoenes Recent spectroscopic studies of UO2 , 1987 .

[25]  A. Pasturel,et al.  Cohesive properties of UO2 , 1996 .

[26]  L. Hedin,et al.  A local exchange-correlation potential for the spin polarized case. i , 1972 .

[27]  G. Sawatzky,et al.  The electronic structure and superexchange interactions in transition-metal compounds , 1987 .

[28]  Akio Kotani,et al.  Systematic Analysis of Core Photoemission Spectra for Actinide Di-Oxides and Rare-Earth Sesqui-Oxides , 1992 .

[29]  T. Karakasidis,et al.  A comment on a rigid-ion potential for UO2 , 1994 .

[30]  Nevill Mott,et al.  Metal-insulator transitions , 1974 .

[31]  B. Cooper,et al.  Theory of the magnetic ordering and lattice internal rearrangement transition in UO/sub 2/ , 1979 .

[32]  Y. Hinatsu,et al.  Magnetic susceptibilities of UO2ThO2 solid solutions , 1985 .

[33]  Allen,et al.  Band gaps and electronic structure of transition-metal compounds. , 1985, Physical review letters.

[34]  W. M. Jones,et al.  The Heat Capacities of Uranium, Uranium Trioxide, and Uranium Dioxide from 15°K to 300°K , 1952 .

[35]  M. Gillan,et al.  The dynamical simulation of superionic UO2 using shell-model potentials , 1994 .

[36]  J. Hubbard,et al.  Electron correlations in narrow energy bands. II. The degenerate band case , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[37]  C. R. A. Catlow,et al.  Interatomic potentials for oxides , 1988 .

[38]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[39]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[40]  D. Bäuerle,et al.  Gas dynamics and film profiles in pulsed-laser deposition of materials. , 1993, Physical review. B, Condensed matter.

[41]  Liechtenstein,et al.  Quantitative model for the superconductivity suppression in R1-xPrxBa2Cu3O7 with different rare earths. , 1995, Physical review letters.