Intrinsic mechanisms of memristive switching.

Resistive switching (RS) memory effect in metal-oxide-metal junctions is a fascinating phenomenon toward next-generation universal nonvolatile memories. However the lack of understanding the electrical nature of RS has held back the applications. Here we demonstrate the electrical nature of bipolar RS in cobalt oxides, such as the conduction mechanism and the switching location, by utilizing a planar single oxide nanowire device. Experiments utilizing field effect devices and multiprobe measurements have shown that the nanoscale RS in cobalt oxides originates from redox events near the cathode with p-type conduction paths, which is in contrast with the prevailing oxygen vacancy based model.

[1]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[2]  H. Akinaga,et al.  Local chemical state change in Co–O resistance random access memory , 2008 .

[3]  Jung-Hyun Lee,et al.  Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. , 2009, Nano letters.

[4]  K. Parlinski,et al.  Electronic structure of cation-deficient CoO from first principles , 2008 .

[5]  Bing Sun,et al.  Ionic doping effect in ZrO2 resistive switching memory , 2010 .

[6]  Jong Yeog Son,et al.  Direct observation of conducting filaments on resistive switching of NiO thin films , 2008 .

[7]  I. Baek,et al.  Write Current Reduction in Transition Metal Oxide Based Resistance Change Memory , 2008 .

[8]  Hidekazu Tanaka,et al.  Mechanism of critical catalyst size effect on MgO nanowire growth by pulsed laser deposition , 2008 .

[9]  Hidenori Takagi,et al.  Resistance Switching and Formation of a Conductive Bridge in Metal/Binary Oxide/Metal Structure for Memory Devices , 2008 .

[10]  S. Tagawa,et al.  Effect of the heterointerface on transport properties of in situ formed MgO/titanate heterostructured nanowires. , 2008, Journal of the American Chemical Society.

[11]  P. Patil,et al.  Thickness-dependent properties of sprayed cobalt oxide thin films , 2001 .

[12]  H. Takagi,et al.  Inhomogeneous chemical states in resistance-switching devices with a planar-type Pt/CuO/Pt structure , 2009 .

[13]  Properties of innovative resistive memories studied by X‐ray and UV photoemission , 2010 .

[14]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[15]  K. Nagashima,et al.  Unipolar resistive switching characteristics of room temperature grown SnO2 thin films , 2009 .

[16]  Tomoji Kawai,et al.  Resistive-switching memory effects of NiO nanowire/metal junctions. , 2010, Journal of the American Chemical Society.

[17]  Y. Hidaka,et al.  Dopant homogeneity and transport properties of impurity-doped oxide nanowires , 2011 .

[18]  Takashi Nakano,et al.  Nanoscale chemical state analysis of resistance random access memory device reacting with Ti , 2010 .

[19]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[20]  Masateru Taniguchi,et al.  Resistive switching multistate nonvolatile memory effects in a single cobalt oxide nanowire. , 2010, Nano letters.

[21]  Tomoji Kawai,et al.  Nonvolatile bipolar resistive memory switching in single crystalline NiO heterostructured nanowires. , 2009, Journal of the American Chemical Society.

[22]  Wen-Yuan Chang,et al.  Resistive switching behaviors of ZnO nanorod layers , 2010 .

[23]  Jun Yeong Seok,et al.  Bias polarity dependent local electrical conduction in resistive switching TiO2 thin films , 2010 .

[24]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[25]  A. Hed Complex Defects in CoO , 1969 .

[26]  R. Waser,et al.  Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere , 2008 .

[27]  R. Waser,et al.  Investigation of the electroforming process in resistively switching TiO2 nanocrosspoint junctions , 2010 .

[28]  J. Yang,et al.  A Family of Electronically Reconfigurable Nanodevices , 2009 .

[29]  A. Hirata,et al.  Specific surface effect on transport properties of NiO/MgO heterostructured nanowires , 2009 .

[30]  T. W. Hickmott LOW-FREQUENCY NEGATIVE RESISTANCE IN THIN ANODIC OXIDE FILMS , 1962 .

[31]  M. Taniguchi,et al.  Crucial role of doping dynamics on transport properties of Sb-doped SnO2 nanowires , 2009 .

[32]  Yuriy V. Pershin,et al.  Memory effects in complex materials and nanoscale systems , 2010, 1011.3053.

[33]  Hisashi Shima,et al.  Voltage polarity dependent low-power and high-speed resistance switching in CoO resistance random access memory with Ta electrode , 2008 .

[34]  J. S. Lee,et al.  Occurrence of both unipolar memory and threshold resistance switching in a NiO film. , 2008, Physical review letters.

[35]  Sunae Seo,et al.  Observation of electric-field induced Ni filament channels in polycrystalline NiOx film , 2007 .

[36]  Hidekazu Tanaka,et al.  Epitaxial growth of MgO nanowires by pulsed laser deposition , 2007 .

[37]  K. Nagashima,et al.  Interfacial effect on metal/oxide nanowire junctions , 2010 .

[38]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[39]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[40]  Nitin P. Padture,et al.  Bipolar resistive switching in individual Au–NiO–Au segmented nanowires , 2009 .

[41]  H. Matsui,et al.  Enhancement of Oxide VLS Growth by Carbon on Substrate Surface , 2008 .

[42]  J. Harding,et al.  Comparison of molecular dynamics and static simulations of an anion vacancy in cobalt oxide , 1987 .

[43]  Hidenori Takagi,et al.  Spatial Redistribution of Oxygen Ions in Oxide Resistance Switching Device after Forming Process , 2010 .

[44]  Hidekazu Tanaka,et al.  Effect of ablated particle flux on MgO nanowire growth by pulsed laser deposition , 2007 .

[45]  Masanori Kawai,et al.  Thermally formed conducting filaments in a single-crystalline NiO thin film , 2010 .

[46]  H. Akinaga,et al.  Synthesis and Characterization of Pt/Co–O/Pt Trilayer Exhibiting Large Reproducible Resistance Switching , 2007 .

[47]  H. Takagi,et al.  Electrode-Geometry Control of the Formation of a Conductive Bridge in Oxide Resistance Switching Devices , 2009 .

[48]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[49]  Hidekazu Tanaka,et al.  Control of magnesium oxide nanowire morphologies by ambient temperature , 2007 .

[50]  Jae Hyuck Jang,et al.  Effects of heat dissipation on unipolar resistance switching in Pt∕NiO∕Pt capacitors , 2008, 0802.3739.

[51]  Sheng-Yao Huang,et al.  Bipolar Resistive Switching Characteristics of Transparent Indium Gallium Zinc Oxide Resistive Random Access Memory , 2010 .

[52]  K. Ohmi,et al.  Opposite bias polarity dependence of resistive switching in n-type Ga-doped-ZnO and p-type NiO thin films , 2010 .

[53]  L. Goux,et al.  On the Gradual Unipolar and Bipolar Resistive Switching of TiN\ HfO2\Pt Memory Systems , 2010 .

[54]  Cheol Seong Hwang,et al.  Identification of the controlling parameter for the set-state resistance of a TiO2 resistive switching cell , 2010 .

[55]  Hidekazu Tanaka,et al.  Mechanism of catalyst diffusion on magnesium oxide nanowire growth , 2007 .

[56]  Shashibhushan B. Mahadik,et al.  Supercapacitive cobalt oxide (Co 3O 4) thin films by spray pyrolysis , 2006 .

[57]  Hidekazu Tanaka,et al.  Crucial role of interdiffusion on magnetic properties of in situ formed MgO∕Fe3−δO4 heterostructured nanowires , 2008 .

[58]  Y. Hidaka,et al.  Role of surrounding oxygen on oxide nanowire growth , 2010 .

[59]  Sung In Kim,et al.  Reversible resistive switching behaviors in NiO nanowires , 2008 .

[60]  Hidekazu Tanaka,et al.  Mechanism and control of sidewall growth and catalyst diffusion on oxide nanowire vapor-liquid-solid growth , 2008 .