Information filtering and information retrieval: two sides of the same coin?

Information filtering systems are designed for unstructured or semistructured data, as opposed to database applications, which use very structured data. The systems also deal primarily with textual information, but they may also entail images, voice, video or other data types that are part of multimedia information systems. Information filtering systems also involve a large amount of data and streams of incoming data, whether broadcast from a remote source or sent directly by other sources. Filtering is based on descriptions of individual or group information preferences, or profiles, that typically represent long-term interests. Filtering also implies removal of data from an incoming stream rather than finding data in the stream; users see only the data that is extracted. Models of information retrieval and filtering, and lessons for filtering from retrieval research are presented.

[1]  Stephen Robertson,et al.  The methodology of information retrieval experiment , 1981 .

[2]  Karen Sparck Jones Automatic keyword classification for information retrieval , 1971 .

[3]  Peter Willett,et al.  Recent trends in hierarchic document clustering: A critical review , 1988, Inf. Process. Manag..

[4]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[5]  Gerard Salton,et al.  Automatic indexing , 1980, ACM '80.

[6]  Gerard Salton,et al.  Improving retrieval performance by relevance feedback , 1997, J. Am. Soc. Inf. Sci..

[7]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[8]  Harold Borko,et al.  Automatic indexing , 1981, ACM '81.

[9]  Chris Buckley,et al.  Probabilistic document indexing from relevance feedback data , 1989, SIGIR '90.

[10]  Nicholas J. Belkin,et al.  Retrieval techniques , 1987 .

[11]  David D. Lewis,et al.  Representation and Learning in Information Retrieval , 1991 .

[12]  Gerard Salton,et al.  Another look at automatic text-retrieval systems , 1986, CACM.

[13]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[14]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[15]  M. Bloor The Structures of the Life-World , 1975 .

[16]  W. Bruce Croft,et al.  Language‐oriented information retrieval , 1989, Int. J. Intell. Syst..

[17]  Nicholas J. Belkin,et al.  Cognitive models and information transfer , 1984 .

[18]  W. Bruce Croft,et al.  The use of phrases and structured queries in information retrieval , 1991, SIGIR '91.

[19]  Louise T. Su Evaluation Measures for Interactive Information Retrieval , 1992, Inf. Process. Manag..

[20]  G. Salton,et al.  Extended Boolean information retrieval , 1983, CACM.

[21]  W. Bruce Croft,et al.  A Comparison of Text Retrieval Models , 1992, Comput. J..

[22]  Christine L. Borgman,et al.  All users of information retrieval systems are not created equal: An exploration into individual differences , 1989, Inf. Process. Manag..

[23]  Peter Willett,et al.  Effectiveness of query expansion in ranked-output document retrieval systems , 1992, J. Inf. Sci..

[24]  W. Bruce Croft,et al.  Experiments with query acquisition and use in document retrieval systems , 1989, SIGIR '90.

[25]  Richard M. Tong,et al.  A knowledge representation for conceptual information retrieval , 1989, Int. J. Intell. Syst..

[26]  David D. Lewis,et al.  An evaluation of phrasal and clustered representations on a text categorization task , 1992, SIGIR '92.

[27]  Nicholas J. Belkin,et al.  Ask for Information Retrieval: Part II. Results of a Design Study , 1982, J. Documentation.

[28]  Nicholas J. Belkin,et al.  Ask for Information Retrieval: Part I. Background and Theory , 1997, J. Documentation.

[29]  Dagobert Soergel,et al.  The importance of SDI for current awareness in fields with severe scatter of information , 1979, J. Am. Soc. Inf. Sci..

[30]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[31]  W. Bruce Croft,et al.  Evaluation of an inference network-based retrieval model , 1991, TOIS.

[32]  W. Bruce Croft,et al.  Efficient probabilistic Inference for text retrieval , 1991, RIAO.