From Chemical Topology to Molecular Machines

[1]  G. Rapenne,et al.  Resolution of topologically chiral molecular objects , 2010 .

[2]  J. Sauvage,et al.  Adjustable receptor based on a [3]rotaxane whose two threaded rings are rigidly attached to two porphyrinic plates: synthesis and complexation studies. , 2009, Journal of the American Chemical Society.

[3]  K. Rissanen,et al.  Cyclic [2]pseudorotaxane tetramers consisting of two rigid rods threaded through two bis-macrocycles: copper(I)-templated synthesis and X-ray structure studies. , 2008, Journal of the American Chemical Society.

[4]  A. Credi,et al.  Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld , 2008 .

[5]  J. Sauvage,et al.  A [3]rotaxane with two porphyrinic plates acting as an adaptable receptor. , 2008, Journal of the American Chemical Society.

[6]  A. Barbieri,et al.  Bimetallic iridium(III) complexes consisting of Ir(ppy)(2) units (ppy = 2-phenylpyridine) and two laterally connected N/\N chelates as bridge: synthesis, separation, and photophysical properties. , 2007, Inorganic chemistry.

[7]  J. Sauvage,et al.  A 1,10‐Phenanthroline‐Containing Ring Connected to a Porphyrin by a Rigid Aromatic Spacer and Its Copper‐Complexed Pseudorotaxane , 2007 .

[8]  J. Sauvage,et al.  Pirouetting Copper(I)‐Assembled Pseudo‐Rotaxanes: Strong Influence of the Axle Structure on the Motion Rate , 2007 .

[9]  J. Sauvage,et al.  Fast electrochemically induced translation of the ring in a copper-complexed [2]rotaxane: the biisoquinoline effect. , 2007, Angewandte Chemie.

[10]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[11]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[12]  J. Sauvage,et al.  Copper(I)-induced threading of two bis- macrocycles on two rods : a cyclic [4]rotaxane , 2006 .

[13]  P. Beer,et al.  Anion-templated assembly of interpenetrated and interlocked structures. , 2006, Chemical communications.

[14]  Jean-Pierre Sauvage,et al.  A fast-moving [2]rotaxane whose stoppers are remote from the copper complex core. , 2005, Organic letters.

[15]  Chih-Ming Ho,et al.  Linear artificial molecular muscles. , 2005, Journal of the American Chemical Society.

[16]  Angelo Taglietti,et al.  A sleeping host awoken by its guest: recognition and sensing of imidazole-containing molecules based on double Cu2+ translocation inside a polyaza macrocycle. , 2004, Angewandte Chemie.

[17]  V. Böhmer,et al.  Rational synthesis of multicyclic bis[2]catenanes. , 2004, Chemistry.

[18]  J. Fraser Stoddart,et al.  A Molecular Elevator , 2004, Science.

[19]  Agnieszka Więckowska,et al.  An Electrochemically Controlled Molecular Shuttle , 2004 .

[20]  Francesco Zerbetto,et al.  Unidirectional rotation in a mechanically interlocked molecular rotor , 2003, Nature.

[21]  Jean-Pierre Sauvage,et al.  Chemically induced contraction and stretching of a linear rotaxane dimer. , 2002, Chemistry.

[22]  A. Harada,et al.  Cyclodextrin-based molecular machines. , 2001, Accounts of chemical research.

[23]  A. Harada,et al.  Daisy Chain Necklace: Tri[2]rotaxane Containing Cyclodextrins , 2000 .

[24]  M. Jiménez,et al.  Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer , 2000 .

[25]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[26]  Fröhlich,et al.  A Molecular Knot with Twelve Amide Groups-One-Step Synthesis, Crystal Structure, Chirality Extracts were presented during a talk at the Universität Düsseldorf on January 11, 2000. We thank Dr. Christian Seel and Dr. Rudolf Hartmann for suggestions and measurements. , 2000, Angewandte Chemie.

[27]  M. Jiménez,et al.  A Hermaphrodite Molecule: Quantitative Copper(I)‐Directed Formation of a Doubly Threaded Assembly from a Ring Attached to a String , 2000 .

[28]  N. Harada,et al.  Light-driven monodirectional molecular rotor , 1999, Nature.

[29]  R. Grubbs,et al.  Synthesis of Catenane Structures via Ring-Closing Metathesis. , 1999, The Journal of organic chemistry.

[30]  Jean-Pierre Sauvage,et al.  Molecular Catenanes, Rotaxanes and Knots , 1999 .

[31]  G. Rapenne,et al.  A Dicopper(I) Trefoil Knot with m‐Phenylene Bridges between the Ligand Subunits: Synthesis, Resolution, and Absolute Configuration , 1999 .

[32]  Jean-Pierre Sauvage,et al.  Synthesis of catenanes and molecular knots by copper(I)-directed formation of the precursors followed by ruthenium(II)-catalysed ring-closing metathesis , 1999 .

[33]  K. Landfester,et al.  Solid state polycondensation within cyclodextrin channels leading to watersoluble polyamide rotaxanes , 1997 .

[34]  Nadrian C. Seeman,et al.  DNA Components for Molecular Architecture , 1997 .

[35]  Robert H. Grubbs,et al.  High‐Yield Synthesis of [2] Catenanes by Intramolecular Ring‐Closing Metathesis , 1997 .

[36]  G. Rapenne,et al.  Resolution of a Molecular Trefoil Knot , 1996 .

[37]  J. F. Stoddart,et al.  Interlocked and Intertwined Structures and Superstructures , 1996 .

[38]  F. Vögtle,et al.  Catenanes and rotaxanes of the amide type , 1996 .

[39]  David A. Leigh,et al.  Facile Synthesis and Solid-State Structure of a Benzylic Amide [2]Catenane† , 1995 .

[40]  K. Mislow,et al.  TOPOLOGICAL FEATURES OF PROTEIN STRUCTURES : KNOTS AND LINKS , 1995 .

[41]  K. Mislow,et al.  Knots in Proteins , 1994 .

[42]  Jean-Pierre Sauvage,et al.  Electrochemically Triggered Swinging of a [2]-Catenate. , 1994, Journal of the American Chemical Society.

[43]  C. Dietrich-Buchecker,et al.  Structure of a Synthetic Trefoil Knot Coordinated to Two Copper(I) Centers , 1990 .

[44]  Jean-Pierre Sauvage,et al.  A Synthetic Molecular Trefoil Knot , 1989 .

[45]  Jean-Pierre Sauvage,et al.  Interlocking of molecular threads: from the statistical approach to the templated synthesis of catenands , 1987 .

[46]  N. Cozzarelli,et al.  Biochemical topology: applications to DNA recombination and replication. , 1986, Science.

[47]  Jean-Pierre Sauvage,et al.  Templated synthesis of interlocked macrocyclic ligands: the catenands , 1984 .

[48]  H. Ogino Relatively high-yield syntheses of rotaxanes. Syntheses and properties of compounds consisting of cyclodextrins threaded by .alpha.,.omega.-diaminoalkanes coordinated to cobalt(III) complexes , 1981 .

[49]  Jean-Pierre Sauvage,et al.  Copper(I)-directed formation of a cyclic pseudorotaxane tetramer and its trimeric homologue. , 2005, Angewandte Chemie.

[50]  M. Fujita,et al.  Self-Assembly of [2]Catenanes Containing Metals in Their Backbones , 1999 .

[51]  G. Rapenne,et al.  Efficient synthesis of a molecular knot by copper(I)-induced formation of the precursor followed by ruthenium(II)-catalysed ring closing metathesis , 1997 .

[52]  C. Dietrich-Buchecker,et al.  High-yield synthesis of a dicopper(I) trefoil knot containing 1,3-phenylene groups as bridges between the chelate units , 1994 .

[53]  G. Budworth The Knot Book , 1983 .

[54]  Jean-Pierre Sauvage,et al.  Une nouvelle famille de molecules : les metallo-catenanes , 1983 .

[55]  H. Brown,et al.  Computational Problems in Abstract Algebra , 1971 .