EP-GIG Priors and Applications in Bayesian Sparse Learning
暂无分享,去创建一个
[1] James G. Scott,et al. Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction , 2022 .
[2] J. Griffin,et al. Bayesian adaptive lassos with non-convex penalization , 2007 .
[3] Francis R. Bach,et al. Sparse probabilistic projections , 2008, NIPS.
[4] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[5] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[6] G. Casella,et al. Penalized regression, standard errors, and Bayesian lassos , 2010 .
[7] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[8] David P. Wipf,et al. Iterative Reweighted 1 and 2 Methods for Finding Sparse Solutions , 2010, IEEE J. Sel. Top. Signal Process..
[9] Bernhard Schölkopf,et al. Use of the Zero-Norm with Linear Models and Kernel Methods , 2003, J. Mach. Learn. Res..
[10] Peter Secretan. Learning , 1965, Mental Health.
[11] B. Jørgensen. Statistical Properties of the Generalized Inverse Gaussian Distribution , 1981 .
[12] M. Yuan,et al. Model selection and estimation in regression with grouped variables , 2006 .
[13] Chris Hans. Bayesian lasso regression , 2009 .
[14] Mário A. T. Figueiredo. Adaptive Sparseness for Supervised Learning , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[15] Wenjiang J. Fu. Penalized Regressions: The Bridge versus the Lasso , 1998 .
[16] New York Dover,et al. ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .
[17] T. Hastie,et al. SparseNet: Coordinate Descent With Nonconvex Penalties , 2011, Journal of the American Statistical Association.
[18] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[19] Stephen P. Boyd,et al. Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.
[20] J. Friedman,et al. Predicting Multivariate Responses in Multiple Linear Regression , 1997 .
[21] A. Doucet,et al. A Hierarchical Bayesian Framework for Constructing Sparsity-inducing Priors , 2010, 1009.1914.
[22] I. Daubechies,et al. Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.
[23] G. Casella,et al. The Bayesian Lasso , 2008 .
[24] James G. Scott,et al. Sparse Bayes estimation in non-Gaussian models via data augmentation , 2011 .
[25] M. West. On scale mixtures of normal distributions , 1987 .
[26] Gert R. G. Lanckriet,et al. On the Convergence of the Concave-Convex Procedure , 2009, NIPS.
[27] Arnaud Doucet,et al. Sparse Bayesian nonparametric regression , 2008, ICML '08.
[28] K. Lange,et al. Normal/Independent Distributions and Their Applications in Robust Regression , 1993 .
[29] Harri T. Kiiveri,et al. A general approach to simultaneous model fitting and variable elimination in response models for biological data with many more variables than observations , 2008, BMC Bioinformatics.
[30] D. F. Andrews,et al. Scale Mixtures of Normal Distributions , 1974 .
[31] Jaeyong Lee,et al. GENERALIZED DOUBLE PARETO SHRINKAGE. , 2011, Statistica Sinica.
[32] C. Braak. Discussion to 'Predicting multivariate responses in multiple linear regression' by L. Breiman & J.H. Friedman , 1997 .
[33] James G. Scott,et al. The horseshoe estimator for sparse signals , 2010 .
[34] Bruno A. Olshausen,et al. Group Sparse Coding with a Laplacian Scale Mixture Prior , 2010, NIPS.
[35] James G. Scott,et al. Local shrinkage rules, Lévy processes and regularized regression , 2010, 1010.3390.
[36] Wotao Yin,et al. Iteratively reweighted algorithms for compressive sensing , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.
[37] J. Griffin,et al. Inference with normal-gamma prior distributions in regression problems , 2010 .
[38] Frank E. Grubbs,et al. An Introduction to Probability Theory and Its Applications , 1951 .
[39] Volkan Cevher,et al. Learning with Compressible Priors , 2009, NIPS.
[40] D. Hunter,et al. Variable Selection using MM Algorithms. , 2005, Annals of statistics.
[41] G. C. Tiao,et al. Bayesian inference in statistical analysis , 1973 .
[42] George Eastman House,et al. Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .
[43] Emil Grosswald,et al. The student t-distribution of any degree of freedom is infinitely divisible , 1976 .