Generalized Kernel Thinning

The kernel thinning (KT) algorithm of Dwivedi and Mackey (2021) compresses an n point distributional summary into a √ n point summary with better-than-Monte-Carlo maximum mean discrepancy for a target kernel k by leveraging a less smooth square-root kernel. Here we provide four improvements. First, we show that KT applied directly to the target kernel yields a tighter O( √ log n/n) integration error bound for each function f in the reproducing kernel Hilbert space. This modification extends the reach of KT to any kernel—even non-smooth kernels that do not admit a square-root, demonstrates that KT is suitable even for heavy-tailed target distributions, and eliminates the exponential dimension-dependence and (log n) factors of standard square-root KT. Second, we show that, for analytic kernels, like Gaussian and inverse multiquadric, target kernel KT admits maximum mean discrepancy (MMD) guarantees comparable to square-root KT without the need for an explicit square-root kernel. Third, we prove KT with a fractional α-power kernel kα for α > 1/2 yields better-than-Monte-Carlo MMD guarantees for non-smooth kernels, like Laplace and Matérn, that do not have square-roots. Fourth, we establish that KT applied to a sum of k and kα (a procedure we call KT+) simultaneously inherits the improved MMD guarantees of power KT and the tighter individual function guarantees of KT on the target kernel. Finally, we illustrate the practical benefits of target KT and KT+ for compression after high-dimensional independent sampling and challenging Markov chain Monte Carlo posterior inference.

[1]  Lester W. Mackey,et al.  Measuring Sample Quality with Stein's Method , 2015, NIPS.

[2]  B. Goodwin Oscillatory behavior in enzymatic control processes. , 1965, Advances in enzyme regulation.

[3]  Martin J. Wainwright,et al.  High-Dimensional Statistics , 2019 .

[4]  Gernot Plank,et al.  Simulating ventricular systolic motion in a four-chamber heart model with spatially varying robin boundary conditions to model the effect of the pericardium , 2020, Journal of biomechanics.

[5]  Raaz Dwivedi,et al.  The power of online thinning in reducing discrepancy , 2016, Probability Theory and Related Fields.

[6]  Jon Cockayne,et al.  Optimal thinning of MCMC output , 2020, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[7]  Fred J. Hickernell,et al.  A generalized discrepancy and quadrature error bound , 1998, Math. Comput..

[8]  A. Berlinet,et al.  Reproducing kernel Hilbert spaces in probability and statistics , 2004 .

[9]  N. Chopin,et al.  Control functionals for Monte Carlo integration , 2014, 1410.2392.

[10]  Fredrik Lindsten,et al.  Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering , 2015, AISTATS.

[11]  Alan Genz,et al.  Testing multidimensional integration routines , 1984 .

[12]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[13]  Qiang Liu,et al.  A Kernelized Stein Discrepancy for Goodness-of-fit Tests , 2016, ICML.

[14]  M. Urner Scattered Data Approximation , 2016 .

[15]  Jeff M. Phillips,et al.  Near-Optimal Coresets of Kernel Density Estimates , 2018, Discrete & Computational Geometry.

[16]  Edo Liberty,et al.  Discrepancy, Coresets, and Sketches in Machine Learning , 2019, COLT.

[17]  Wittawat Jitkrittum,et al.  Large sample analysis of the median heuristic , 2017, 1707.07269.

[18]  Lester Mackey,et al.  Kernel Thinning , 2021, COLT.

[19]  Heikki Haario,et al.  Adaptive proposal distribution for random walk Metropolis algorithm , 1999, Comput. Stat..

[20]  R. Tweedie,et al.  Exponential convergence of Langevin distributions and their discrete approximations , 1996 .

[21]  Frances Y. Kuo,et al.  High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.

[22]  Lawrence Mitchell,et al.  Simulating Human Cardiac Electrophysiology on Clinical Time-Scales , 2011, Front. Physio..

[23]  Galin L. Jones On the Markov chain central limit theorem , 2004, math/0409112.

[24]  Alessandro Rudi,et al.  Finding Global Minima via Kernel Approximations , 2020, Mathematical Programming.

[25]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[26]  Frank D. Wood,et al.  Super-Sampling with a Reservoir , 2016, UAI.

[27]  Krikamol Muandet,et al.  Minimax Estimation of Kernel Mean Embeddings , 2016, J. Mach. Learn. Res..

[28]  Ingo Steinwart,et al.  A closer look at covering number bounds for Gaussian kernels , 2021, J. Complex..

[29]  Alexander J. Smola,et al.  Super-Samples from Kernel Herding , 2010, UAI.

[30]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[31]  Arthur Gretton,et al.  A Kernel Test of Goodness of Fit , 2016, ICML.

[32]  E. Novak,et al.  Tractability of Multivariate Problems Volume II: Standard Information for Functionals , 2010 .

[33]  Andreas Christmann,et al.  Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.

[34]  Samira Samadi,et al.  Near-Optimal Herding , 2014, COLT.

[35]  Liang Zhao,et al.  On the Inclusion Relation of Reproducing Kernel Hilbert Spaces , 2011, ArXiv.

[36]  I. J. Schoenberg Metric spaces and completely monotone functions , 1938 .

[37]  V. Roshan Joseph,et al.  Support points , 2016, The Annals of Statistics.

[38]  Franccois-Xavier Briol,et al.  Stein Point Markov Chain Monte Carlo , 2019, ICML.

[39]  HaaseGundolf,et al.  Anatomically accurate high resolution modeling of human whole heart electromechanics , 2016 .

[40]  Kenji Fukumizu,et al.  Equivalence of distance-based and RKHS-based statistics in hypothesis testing , 2012, ArXiv.

[41]  Lester W. Mackey,et al.  Metrizing Weak Convergence with Maximum Mean Discrepancies , 2020, J. Mach. Learn. Res..

[42]  A. Tanskanen,et al.  A simplified local control model of calcium-induced calcium release in cardiac ventricular myocytes. , 2004, Biophysical journal.

[43]  Ding-Xuan Zhou,et al.  Capacity of reproducing kernel spaces in learning theory , 2003, IEEE Transactions on Information Theory.

[44]  Art B. Owen,et al.  Statistically Efficient Thinning of a Markov Chain Sampler , 2015, ArXiv.

[45]  Manfred Liebmann,et al.  Anatomically accurate high resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation , 2016, J. Comput. Phys..

[46]  Necdet Batır Bounds for the Gamma Function , 2017, 1705.06167.

[47]  A. J. Lotka Elements of Physical Biology. , 1925, Nature.