Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods

Abstract Inflation forecasting is an important but difficult task. Here, we explore advances in machine learning (ML) methods and the availability of new datasets to forecast U.S. inflation. Despite the skepticism in the previous literature, we show that ML models with a large number of covariates are systematically more accurate than the benchmarks. The ML method that deserves more attention is the random forest model, which dominates all other models. Its good performance is due not only to its specific method of variable selection but also the potential nonlinearities between past key macroeconomic variables and inflation. Supplementary materials for this article are available online.

[1]  Marcelo C. Medeiros,et al.  Real-time inflation forecasting with high-dimensional models: The case of Brazil , 2017 .

[2]  P. Hansen A Test for Superior Predictive Ability , 2005 .

[3]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[4]  Mark W. Watson,et al.  Has inflation become harder to forecast , 2005 .

[5]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[6]  Allan Timmermann,et al.  Complete subset regressions , 2013 .

[7]  Peng Zhao,et al.  On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..

[8]  Jonathan H. Wright,et al.  Forecasting Inflation , 2011 .

[9]  Bryan T. Kelly,et al.  Empirical Asset Pricing Via Machine Learning , 2018, The Review of Financial Studies.

[10]  Marcelo C. Medeiros,et al.  Forecasting macroeconomic variables in data-rich environments , 2016 .

[11]  J. Bai,et al.  Forecasting economic time series using targeted predictors , 2008 .

[12]  N. Bloom The Impact of Uncertainty Shocks , 2007 .

[13]  A. Kock,et al.  Oracle Inequalities for High Dimensional Vector Autoregressions , 2012, 1311.0811.

[14]  Sendhil Mullainathan,et al.  Machine Learning: An Applied Econometric Approach , 2017, Journal of Economic Perspectives.

[15]  A. Atkeson,et al.  Are Phillips Curves Useful for Forecasting Inflation , 2001 .

[16]  J. Stock,et al.  Macroeconomic Forecasting Using Diffusion Indexes , 2002 .

[17]  Halbert White,et al.  Tests of Conditional Predictive Ability , 2003 .

[18]  Paul Krugman,et al.  It's Baaack: Japan's Slump and the Return of the Liquidity Trap , 1998 .

[19]  Robert J. Shiller,et al.  Speculative Asset Prices , 2014 .

[20]  Hal R. Varian,et al.  Big Data: New Tricks for Econometrics , 2014 .

[21]  Gauti B. Eggertsson,et al.  Zero Bound on Interest Rates and Optimal Monetary Policy , 2003 .

[22]  Serena Ng,et al.  Boosting diffusion indices , 2009 .

[23]  Rogier Quaedvlieg Multi-Horizon Forecast Comparison , 2021 .

[24]  J. Stock,et al.  Modeling Inflation after the Crisis , 2010 .

[25]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[26]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2001, Springer Series in Statistics.

[27]  Peter Reinhard Hansen,et al.  The Model Confidence Set , 2010 .

[28]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[29]  Serena Ng,et al.  Working Paper Series , 2019 .

[30]  Allan Timmermann,et al.  Complete subset regressions with large-dimensional sets of predictors , 2015 .

[31]  A. Timmermann,et al.  Handbook of Economic Forecasting, Vol 2A , 2013 .

[32]  Jean-Philippe Vert,et al.  Consistency of Random Forests , 2014, 1405.2881.

[33]  S. Hall,et al.  The macroeconomic and fiscal implications of inflation forecast errors , 2018, Journal of Economic Dynamics and Control.

[34]  Marco Lippi,et al.  Do Financial Variables Help Forecasting Inflation and Real Activity in the Euro Area , 2002 .

[35]  Joshua C. C. Chan Large Bayesian Vector Autoregressions , 2020 .

[36]  The Impact of Uncertainty Shocks , 2007 .

[37]  J. Bai,et al.  Inferential Theory for Factor Models of Large Dimensions , 2003 .

[38]  S. Turnovsky,et al.  Forecasting Inflation Using Commodity Price Aggregates , 2011 .

[39]  D. Giannone,et al.  Large Bayesian vector auto regressions , 2010 .

[40]  Guohua Zou,et al.  Model averaging by jackknife criterion in models with dependent data , 2013 .

[41]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[42]  Lutz Kilian,et al.  How Useful is Bagging in Forecasting Economic Time Series? A Case Study of Us CPI Inflation , 2005 .

[43]  Emi Nakamura,et al.  Inflation forecasting using a neural network , 2005 .

[44]  Robert E. Lucas,et al.  Models of business cycles , 1987 .

[45]  Massimiliano Marcellino,et al.  Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors , 2019, Journal of Econometrics.

[46]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[47]  Marco Lippi,et al.  The generalized dynamic factor model: consistency and rates , 2004 .

[48]  M. Hallin,et al.  The Generalized Dynamic-Factor Model: Identification and Estimation , 2000, Review of Economics and Statistics.

[49]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[50]  Francesco Ravazzolo,et al.  Real-Time Inflation Forecasting in a Changing World , 2013 .

[51]  Matteo Iacoviello House prices, borrowing constraints and monetary policy in the business cycle , 2005 .

[52]  Domenico Giannone,et al.  Economic Predictions with Big Data: The Illusion of Sparsity , 2017, Econometrica.

[53]  Evangelos Spiliotis,et al.  Statistical and Machine Learning forecasting methods: Concerns and ways forward , 2018, PloS one.

[54]  M. Medeiros,et al.  Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination , 2005 .

[55]  Stefan Wager,et al.  Estimation and Inference of Heterogeneous Treatment Effects using Random Forests , 2015, Journal of the American Statistical Association.

[56]  Eduardo F. Mendes,et al.  ℓ1-regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors , 2016 .

[57]  L. Kilian,et al.  How Useful Is Bagging in Forecasting Economic Time Series? A Case Study of U.S. Consumer Price Inflation , 2008 .

[58]  Jeffrey S. Racine,et al.  Jackknife model averaging , 2012 .

[59]  A. E. Hoerl,et al.  Ridge Regression: Applications to Nonorthogonal Problems , 1970 .