Prognostic impact of IDH2 mutations in cytogenetically normal acute myeloid leukemia.

Mutations in the nicotinamide adenine dinucleotide phosphate(+)-dependent isocitrate dehydrogenase gene 2 (IDH2) have recently been found in patients with acute myeloid leukemia (AML) as well as in patients with leukemic transformation of myeloproliferative neoplasms. We analyzed 272 adult patients with cytogenetically normal AML (CN-AML) for the presence of IDH2 mutations in codons R140 and R172. IDH2 mutations of amino acid 140 or 172 could be identified in 12.1% of CN-AML patients, with the majority of mutations (90%) occurring at position R140. The incidence of IDH2 mutations in AML patients with aberrant karyotypes (n = 130) was significantly lower (3.8%, P = .006). IDH2 mutations were mutually exclusive with mutations in IDH1. IDH2 mutation status alone or in combination with IDH1 mutations had no impact on response to therapy, overall survival, and relapse-free survival in patients with CN-AML. In conclusion, IDH2 mutations are frequently found in CN-AML, but in our analysis these mutations did not influence treatment outcome. This study was registered at www.clinicaltrials.gov as #NCT00209833.

[1]  Jih-Luh Tang,et al.  Distinct clinical and biologic characteristics in adult acute myeloid leukemia bearing the isocitrate dehydrogenase 1 mutation. , 2010, Blood.

[2]  L. Bullinger,et al.  Prognostic impact of WT1 mutations in cytogenetically normal acute myeloid leukemia: a study of the German-Austrian AML Study Group. , 2009, Blood.

[3]  C. Bloomfield,et al.  Patients With Acute Myeloid Leukemia and RAS Mutations Benefit Most From Postremission High-Dose Cytarabine: A Cancer and Leukemia Group B Study , 2008 .

[4]  K. Döhner,et al.  Single nucleotide polymorphism in the mutational hotspot of WT1 predicts a favorable outcome in patients with cytogenetically normal acute myeloid leukemia. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[5]  A. Green,et al.  Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms. , 2010, The New England journal of medicine.

[6]  R. McLendon,et al.  IDH1 and IDH2 mutations in gliomas. , 2009, The New England journal of medicine.

[7]  Tak W. Mak,et al.  Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations , 2010, The Journal of experimental medicine.

[8]  K. Döhner,et al.  Prognostic factors in adult patients up to 60 years old with acute myeloid leukemia and translocations of chromosome band 11q23: individual patient data-based meta-analysis of the German Acute Myeloid Leukemia Intergroup. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[9]  Ken Chen,et al.  Recurring mutations found by sequencing an acute myeloid leukemia genome. , 2009, The New England journal of medicine.

[10]  K. Wagner,et al.  Impact of IDH1 R132 mutations and an IDH1 single nucleotide polymorphism in cytogenetically normal acute myeloid leukemia: SNP rs11554137 is an adverse prognostic factor. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[11]  T. Haferlach,et al.  IDH1 Mutations Are Detected in 9.3% of All AML and Are Strongly Associated with Intermediate Risk Karyotype and Unfavourable Prognosis: a Study of 999 Patients , 2009 .

[12]  Amy E. Hawkins,et al.  DNA sequencing of a cytogenetically normal acute myeloid leukemia genome , 2008, Nature.

[13]  Omar Abdel-Wahab,et al.  The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. , 2010, Cancer cell.

[14]  A. Ganser,et al.  Risk-adapted induction and consolidation therapy in adults with de novo AML aged ≤ 60 years: results of a prospective multicenter trial , 2004, Annals of Hematology.