Coherent Quantum Channel Discrimination

This paper introduces coherent quantum channel discrimination as a coherent version of conventional quantum channel discrimination. Coherent channel discrimination is phrased here as a quantum interactive proof system between a verifier and a prover, wherein the goal of the prover is to distinguish two channels called in superposition in order to distill a Bell state at the end. The key measure considered here is the success probability of distilling a Bell state, and I prove that this success probability does not increase under the action of a quantum super-channel, thus establishing this measure as a fundamental measure of channel distinguishability. Also, I establish some bounds on this success probability in terms of the success probability of conventional channel discrimination. Finally, I provide an explicit semi-definite program that can compute the success probability.

[1]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[2]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[3]  Noam Nisan,et al.  Quantum circuits with mixed states , 1998, STOC '98.

[4]  John Preskill,et al.  Quantum information and precision measurement , 1999, quant-ph/9904021.

[5]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[6]  Alexei Y. Kitaev,et al.  Parallelization, amplification, and exponential time simulation of quantum interactive proof systems , 2000, STOC '00.

[7]  A. Acín Statistical distinguishability between unitary operations. , 2001, Physical review letters.

[8]  Martin Mathieu COMPLETELY BOUNDED MAPS AND OPERATOR ALGEBRAS (Cambridge Studies in Advanced Mathematics 78) , 2004 .

[9]  R. Werner,et al.  Tema con variazioni: quantum channel capacity , 2003, quant-ph/0311037.

[10]  Aram Harrow Coherent communication of classical messages. , 2004, Physical review letters.

[11]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[12]  Massimiliano F. Sacchi,et al.  Optimal discrimination of quantum operations , 2005 .

[13]  Bill Rosgen,et al.  On the hardness of distinguishing mixed-state quantum computations , 2004, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[14]  Massimiliano F. Sacchi,et al.  Entanglement can enhance the distinguishability of entanglement-breaking channels , 2005 .

[15]  S. Lloyd Enhanced Sensitivity of Photodetection via Quantum Illumination , 2008, Science.

[16]  G. D’Ariano,et al.  Transforming quantum operations: Quantum supermaps , 2008, 0804.0180.

[17]  John Watrous,et al.  Semidefinite Programs for Completely Bounded Norms , 2009, Theory Comput..

[18]  William Rosgen,et al.  Computational Distinguishability of Quantum Channels , 2009, ArXiv.

[19]  A. Harrow Entanglement spread and clean resource inequalities , 2009, 0909.1557.

[20]  Mark M. Wilde,et al.  From Classical to Quantum Shannon Theory , 2011, ArXiv.

[21]  Mark M. Wilde,et al.  Quantum Information Theory , 2013 .

[22]  Thomas Vidick,et al.  Quantum Proofs , 2016, Found. Trends Theor. Comput. Sci..

[23]  Robert B. Griffiths,et al.  Quantum Error Correction , 2011 .

[24]  C. Branciard,et al.  Communication through coherent control of quantum channels , 2018, Quantum.

[25]  Francisco Delgado,et al.  Communication Enhancement through Quantum Coherent Control of N Channels in an Indefinite Causal-Order Scenario , 2019, Entropy.

[26]  Ryan LaRose,et al.  Quantum-assisted quantum compiling , 2018, Quantum.

[27]  M. Murao,et al.  Controlled quantum operations and combs, and their applications to universal controllization of divisible unitary operations , 2019, 1911.01645.

[28]  Gilad Gour,et al.  Comparison of Quantum Channels by Superchannels , 2018, IEEE Transactions on Information Theory.

[29]  Philippe Allard Gu'erin,et al.  Communication through quantum-controlled noise , 2018, Physical Review A.

[30]  Alexander Semenovich Holevo,et al.  Quantum Systems, Channels, Information: A Mathematical Introduction , 2019 .

[31]  Kunal Sharma,et al.  Noise resilience of variational quantum compiling , 2019, New Journal of Physics.

[32]  Mark M. Wilde,et al.  Entanglement and secret-key-agreement capacities of bipartite quantum interactions and read-only memory devices , 2017, Physical Review A.