Similarity maps and field-guided T-splines

A variety of techniques were proposed to model smooth surfaces based on tensor product splines (e.g. subdivision surfaces, free-form splines, T-splines). Conversion of an input surface into such a representation is commonly achieved by constructing a global seamless parametrization, possibly aligned to a guiding cross-field (e.g. of principal curvature directions), and using this parametrization as domain to construct the spline-based surface. One major fundamental difficulty in designing robust algorithms for this task is the fact that for common types, e.g. subdivision surfaces (requiring a conforming domain mesh) or T-spline surfaces (requiring a globally consistent knot interval assignment) reliably obtaining a suitable parametrization that has the same topological structure as the guiding field poses a major challenge. Even worse, not all fields do admit suitable parametrizations, and no concise conditions are known as to which fields do. We present a class of surface constructions (T-splines with halfedge knots) and a class of parametrizations (seamless similarity maps) that are, in a sense, a perfect match for the task: for any given guiding field structure, a compatible parametrization of this kind exists and a smooth piecewise rational surface with exactly the same structure as the input field can be constructed from it. As a byproduct, this enables full control over extraordinary points. The construction is backward compatible with classical NURBS. We present efficient algorithms for building discrete conformal similarity maps and associated T-meshes and T-spline surfaces.

[1]  Jörg Peters,et al.  Joining smooth patches around a vertex to form a Ck surface , 1992, Comput. Aided Geom. Des..

[2]  Sylvain Lefebvre,et al.  Invisible Seams , 2010, Comput. Graph. Forum.

[3]  Yiying Tong,et al.  Chapter 7: Discrete differential forms for computational modeling , 2008, SIGGRAPH 2008.

[4]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[5]  D. Zorin,et al.  Feature-aligned T-meshes , 2010, ACM Trans. Graph..

[6]  Yaron Lipman,et al.  Orbifold Tutte embeddings , 2015, ACM Trans. Graph..

[7]  Craig Gotsman,et al.  Conformal Flattening by Curvature Prescription and Metric Scaling , 2008, Comput. Graph. Forum.

[8]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[9]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[10]  Marcel Campen,et al.  Interactively controlled quad remeshing of high resolution 3D models , 2016, ACM Trans. Graph..

[11]  Hong Qin,et al.  Manifold T-Spline , 2006, GMP.

[12]  Thomas J. Cashman,et al.  Beyond Catmull–Clark? A Survey of Advances in Subdivision Surface Methods , 2012, Comput. Graph. Forum.

[13]  Guy Bunin,et al.  A continuum theory for unstructured mesh generation in two dimensions , 2006, Comput. Aided Geom. Des..

[14]  Pierre Alliez,et al.  Designing quadrangulations with discrete harmonic forms , 2006, SGP '06.

[15]  Bruno Lévy,et al.  N-symmetry direction field design , 2008, TOGS.

[16]  B. Chow,et al.  COMBINATORIAL RICCI FLOWS ON SURFACES , 2002, math/0211256.

[17]  Denis Zorin,et al.  Dyadic T-mesh subdivision , 2015, ACM Trans. Graph..

[18]  David Bommes,et al.  Mixed-integer quadrangulation , 2009, SIGGRAPH '09.

[19]  Peter Schröder,et al.  Conformal equivalence of triangle meshes , 2008, ACM Trans. Graph..

[20]  Daniele Panozzo,et al.  Automatic Construction of Quad-Based Subdivision Surfaces Using Fitmaps , 2011, IEEE Transactions on Visualization and Computer Graphics.

[21]  Jingyi Jin,et al.  Parameterization of triangle meshes over quadrilateral domains , 2004, SGP '04.

[22]  Günther Greiner,et al.  Variational Design and Fairing of Spline Surfaces , 1994, Comput. Graph. Forum.

[23]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[24]  Feng Luo COMBINATORIAL YAMABE FLOW ON SURFACES , 2003 .

[25]  Matthias Eck,et al.  Automatic reconstruction of B-spline surfaces of arbitrary topological type , 1996, SIGGRAPH.

[26]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[27]  Jiansong Deng,et al.  Polynomial splines over general T-meshes , 2010, The Visual Computer.

[28]  Dmitry Sokolov,et al.  Robust Polylines Tracing for N-Symmetry Direction Field on Triangulated Surfaces , 2013, ACM Trans. Graph..

[29]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[30]  Konrad Polthier,et al.  QuadCover ‐ Surface Parameterization using Branched Coverings , 2007, Comput. Graph. Forum.

[31]  Peter Schröder,et al.  Interactive multiresolution mesh editing , 1997, SIGGRAPH.

[32]  Yiying Tong,et al.  Discrete differential forms for computational modeling , 2005, SIGGRAPH Courses.

[33]  Marcel Campen,et al.  Quad Layout Embedding via Aligned Parameterization , 2014, Comput. Graph. Forum.

[34]  T. Hughes,et al.  Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline , 2012 .

[35]  Denis Zorin,et al.  Robust field-aligned global parametrization , 2014, ACM Trans. Graph..

[36]  S. Yau,et al.  Lectures on Differential Geometry , 1994 .

[37]  Xianfeng Gu,et al.  A discrete uniformization theorem for polyhedral surfaces , 2013, Journal of Differential Geometry.

[38]  Pierre Alliez,et al.  Integer-grid maps for reliable quad meshing , 2013, ACM Trans. Graph..

[39]  Yaron Lipman,et al.  Bounded distortion mapping spaces for triangular meshes , 2012, ACM Trans. Graph..

[40]  Marcel Campen,et al.  On Discrete Conformal Seamless Similarity Maps , 2017, ArXiv.

[41]  M. Troyanov Prescribing curvature on compact surfaces with conical singularities , 1991 .

[42]  Bruno Lévy,et al.  Automatic and interactive mesh to T-spline conversion , 2006, SGP '06.

[43]  Jiansong Deng,et al.  Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..

[44]  Denis Zorin,et al.  Controlled-distortion constrained global parametrization , 2013, ACM Trans. Graph..

[45]  M. Postnikov,et al.  Geometry VI: Riemannian Geometry , 2001 .

[46]  Andrei Khodakovsky,et al.  Progressive geometry compression , 2000, SIGGRAPH.

[47]  David Bommes,et al.  Quantized global parametrization , 2015, ACM Trans. Graph..

[48]  Keenan Crane,et al.  Rectangular multi-chart geometry images , 2006, SGP '06.

[49]  Jörg Peters,et al.  Spline surfaces with T-junctions , 2016, ArXiv.

[50]  Thierry Aubin,et al.  Some Nonlinear Problems in Riemannian Geometry , 1998 .

[51]  Bernd Hamann,et al.  Generalized B-spline subdivision-surface wavelets for geometry compression , 2004, IEEE Transactions on Visualization and Computer Graphics.

[52]  Dmitry Sokolov,et al.  Tracing cross-free polylines oriented by a N-symmetry direction field on triangulated surfaces , 2013, ArXiv.

[53]  Zohar Levi,et al.  Bounded distortion parametrization in the space of metrics , 2016, ACM Trans. Graph..

[54]  Dieter W. Fellner,et al.  Extended subdivision surfaces: Building a bridge between NURBS and Catmull-Clark surfaces , 2006, TOGS.

[55]  David Eppstein,et al.  Motorcycle Graphs: Canonical Quad Mesh Partitioning , 2008, Comput. Graph. Forum.

[56]  Hong Qin,et al.  Manifold splines with single extraordinary point , 2007, Symposium on Solid and Physical Modeling.

[57]  Thomas W. Sederberg,et al.  G1 non-uniform Catmull-Clark surfaces , 2016, ACM Trans. Graph..

[58]  Keenan Crane,et al.  Trivial Connections on Discrete Surfaces , 2010, Comput. Graph. Forum.

[59]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[60]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[61]  Daniele Panozzo,et al.  Directional Field Synthesis, Design, and Processing , 2016, Comput. Graph. Forum.

[62]  Denis Zorin,et al.  Global parametrization by incremental flattening , 2012, ACM Trans. Graph..

[63]  Pierre Alliez,et al.  Periodic global parameterization , 2006, TOGS.

[64]  Peter Schröder,et al.  Discrete conformal mappings via circle patterns , 2005, TOGS.

[65]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[66]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[67]  Hongwei Lin,et al.  Watertight trimmed NURBS , 2008, ACM Trans. Graph..

[68]  Xianfeng Gu,et al.  Discrete Surface Ricci Flow: Theory and Applications , 2007, IMA Conference on the Mathematics of Surfaces.

[69]  Marián Trenkler,et al.  A theorem on the structure of cell–decompositions of orientable 2–manifolds , 1973 .

[70]  Monica K. Hurdal,et al.  Planar Conformal Mappings of Piecewise Flat Surfaces , 2002, VisMath.

[71]  Peter Schröder,et al.  An algorithm for the construction of intrinsic delaunay triangulations with applications to digital geometry processing , 2006, Computing.