Provenance and production technology of late medieval ‘Besztercebánya/Banská Bystrica–type’ high-quality stove tiles

[1]  Rita Rakonczay “The Stove of the Archbishop.” Figural stove tiles from the Castle of Csábrág (Čabrad’) , 2020, Hungarian Archaeology.

[2]  M. Tóth,et al.  Petrographic and XRD analysis of the ceramic body of late medieval besztercebánya/banská bystrica-type stove tiles , 2019, ArchéoSciences.

[3]  A. Lichtenberger,et al.  The technology and production of glazed ceramics from Middle Islamic Jerash, Jordan , 2019, Archaeometry.

[4]  M. Tite,et al.  From tin- to antimony-based yellow opacifiers in the early Islamic Egyptian glazes: Regional influences and ruling dynasties , 2019, Journal of Archaeological Science: Reports.

[5]  Moujan Matin Tin-based opacifiers in archaeological glass and ceramic glazes: a review and new perspectives , 2018, Archaeological and Anthropological Sciences.

[6]  M. Tite,et al.  On the origins of tin-opacified ceramic glazes: New evidence from early Islamic Egypt, the Levant, Mesopotamia, Iran, and Central Asia , 2018, Journal of Archaeological Science.

[7]  J. Molera,et al.  Glaze production at an early Islamic workshop in al-Andalus , 2018, Archaeological and Anthropological Sciences.

[8]  Zoltán Batizi Mining in Medieval Hungary , 2018 .

[9]  L. Adlington The Corning Archaeological Reference Glasses: New Values for “Old” Compositions , 2017 .

[10]  M. Xanthopoulou,et al.  Technology issues of Byzantine glazed pottery from Corinth, Greece , 2016 .

[11]  M. Mordovin New results of the excavations at the Saint James’ Pauline friary and at the Castle Čabraď , 2016 .

[12]  Robert T. Downs,et al.  The power of databases: The RRUFF project , 2016 .

[13]  L. Chiarantini,et al.  Early Renaissance Production Recipes for Naples Yellow Pigment: A Mineralogical and Lead Isotope Study of Italian Majolica from Montelupo (Florence) , 2015 .

[14]  B. Vekemans,et al.  Heating the house. An archaeological and archaeometrical investigation into the tile-stoves of late-medieval Flanders, Belgium (14–17th centuries) , 2015 .

[15]  G. Cultrone,et al.  The combined use of petrographic, chemical and physical techniques to define the technological features of Iberian ceramics from the Canto Tortoso area (Granada, Spain) , 2014 .

[16]  Dmitrijs Jakovļevs,et al.  XRD and SEM Studies of Archaeological Stove Tile Ceramics of Turaida Castle , 2014 .

[17]  M. Tite,et al.  Production technology and replication of lead antimonate yellow glass from New Kingdom Egypt and the Roman Empire , 2014 .

[18]  B. Tóth,et al.  Régészeti kutatások a Salgói várban@@@Archäologische Forschungen in der Burg Salgó , 2013 .

[19]  J. Molera,et al.  The use of micro-XRD for the study of glaze color decorations , 2013 .

[20]  Ps Quinn,et al.  Ceramic Petrography: The Interpretation of Archaeological Pottery & Related Artefacts in Thin Section , 2013 .

[21]  Costanza Miliani,et al.  Raman scattering features of lead pyroantimonate compounds: implication for the non‐invasive identification of yellow pigments on ancient ceramics. Part II. In situ characterisation of Renaissance plates by portable micro‐Raman and XRF studies , 2011 .

[22]  M. Tite,et al.  PRODUCTION TECHNOLOGY OF ROMAN LEAD‐GLAZED POTTERY AND ITS CONTINUANCE INTO LATE ANTIQUITY , 2010 .

[23]  Robert B. Heimann,et al.  Classic and Advanced Ceramics: From Fundamentals to Applications , 2010 .

[24]  M. Tite The production technology of Italian maiolica: a reassessment , 2009 .

[25]  M. Maggetti,et al.  Antimonate opaque glaze colours from the faience manufacture of Le Bois d'Épense (19th century, Northeastern France)* , 2009 .

[26]  Marta Mácelová Nepublikovaný súbor neskorogotických kachlíc z Dolnej ulice v Banskej Bystrici , 2009 .

[27]  G. Morin,et al.  Rediscovering ancient glass technologies through the examination of opacifier crystals , 2008 .

[28]  M. Tite CERAMIC PRODUCTION, PROVENANCE AND USE : A REVIEW , 2008 .

[29]  M. Tite,et al.  DISCOVERY, PRODUCTION AND USE OF TIN-BASED OPACIFIERS IN GLASSES, ENAMELS AND GLAZES FROM THE LATE IRON AGE ONWARDS: A REASSESSMENT* , 2007 .

[30]  S. Ruiz-Moreno,et al.  Experimental confirmation by Raman spectroscopy of a PbSnSb triple oxide yellow pigment in sixteenth-century Italian pottery , 2006 .

[31]  Anne Bouquillon,et al.  THE ‘DELLA ROBBIA BLUE’: A CASE STUDY FOR THE USE OF COBALT PIGMENTS IN CERAMICS DURING THE ITALIAN RENAISSANCE* , 2006 .

[32]  R. Peschar,et al.  Early Production Recipes for Lead Antimonate Yellow in Italian Art , 2005 .

[33]  C. Sandalinas,et al.  Lead–Tin–Antimony Yellow - Historical Manufacture, Molecular Characterization and Identification in Seventeenth-Century Italian Paintings , 2004 .

[34]  C. Rodriguez-Navarro,et al.  TEM study of mullite growth after muscovite breakdown , 2003 .

[35]  A. Shortland The use and origin of antimonate colorants in early Egyptian glass , 2002 .

[36]  R. Stone,et al.  Malkata and Lisht Glassmaking Technologies: Towards a Specific Link between Second Millennium BC , 2002 .

[37]  J. Molera,et al.  Interactions between Clay Bodies and Lead Glazes , 2001 .

[38]  Giuseppe Cultrone,et al.  Carbonate and silicate phase reactions during ceramic firing , 2001 .

[39]  Andrew J. Shortland,et al.  Vitreous Materials at Amarna: The production of glass and faience in 18th Dynasty Egypt , 2000 .

[40]  R. B. Mason,et al.  Lead glazes in antiquity - Methods of production and reasons for use , 1998 .

[41]  M. Tite,et al.  The beginnings of tin-opacification of pottery glazes , 1997 .

[42]  B. Gratuze,et al.  De l'origine du cobalt : du verre à la céramique , 1996 .

[43]  R. Stone,et al.  An Investigation of the Antimony-Containing Minerals used by the Romans to Prepare Opaque Colored Glasses , 1996 .

[44]  W. S. MacKenzie,et al.  Atlas of Sedimentary Rocks Under the Microscope , 1984 .

[45]  N. L. Bowen,et al.  Melting relations in the systems Na 2 O-Al 2 O 3 -SiO 2 and K 2 O-Al 2 O 3 -SiO 2 , 1947 .