A Hierarchy of Responses to Auditory Regularities in the Macaque Brain

Can monkeys learn simple auditory sequences and detect when a new sequence deviates from the stored pattern? Here we tested the predictive-coding hypothesis, which postulates that cortical areas encode internal models of sensory sequences at multiple hierarchical levels, and use these predictive models to detect deviant stimuli. In humans, hierarchical predictive coding has been supported by studies of auditory sequence processing, but it is unclear whether internal hierarchical models of auditory sequences are also available to nonhuman animals. Using fMRI, we evaluated the encoding of auditory regularities in awake monkeys listening to first- and second-order sequence violations. We observed distinct fMRI responses to first-order violations in auditory cortex and to second-order violations in a frontoparietal network, a distinction only demonstrated in conscious humans so far. The results indicate that the capacity to represent and predict the structure of auditory sequences is shared by humans and nonhuman primates.

[1]  T. Albright,et al.  Nonhuman primate model of schizophrenia using a noninvasive EEG method , 2013, Proceedings of the National Academy of Sciences.

[2]  Erich Schröger,et al.  I know what is missing here: electrophysiological prediction error signals elicited by omissions of predicted ”what” but not ”when” , 2013, Front. Hum. Neurosci..

[3]  M. Steinschneider,et al.  Searching for the Mismatch Negativity in Primary Auditory Cortex of the Awake Monkey: Deviance Detection or Stimulus Specific Adaptation? , 2012, The Journal of Neuroscience.

[4]  S. Grimm,et al.  Detection of Simple and Pattern Regularity Violations Occurs at Different Levels of the Auditory Hierarchy , 2012, PloS one.

[5]  C. Petkov,et al.  Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates , 2012, Front. Evol. Neurosci..

[6]  Angela D. Friederici,et al.  Artificial grammar learning meets formal language theory: an overview , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[7]  J. Changeux,et al.  A Neuronal Model of Predictive Coding Accounting for the Mismatch Negativity , 2012, The Journal of Neuroscience.

[8]  E. Schröger,et al.  Early electrophysiological indicators for predictive processing in audition: a review. , 2012, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[9]  S. Dehaene,et al.  Event related potentials elicited by violations of auditory regularities in patients with impaired consciousness , 2012, Neuropsychologia.

[10]  S. Dehaene,et al.  Evidence for a hierarchy of predictions and prediction errors in human cortex , 2011, Proceedings of the National Academy of Sciences.

[11]  C. Olson,et al.  Statistical learning of visual transitions in monkey inferotemporal cortex , 2011, Proceedings of the National Academy of Sciences.

[12]  I. Nelken,et al.  Stimulus-Specific Adaptation and Deviance Detection in the Rat Auditory Cortex , 2011, PloS one.

[13]  M. Mallar Chakravarty,et al.  An MRI based average macaque monkey stereotaxic atlas and space (MNI monkey space) , 2011, NeuroImage.

[14]  M. Quirk,et al.  Stimulus-Specific Adaptation in Auditory Cortex Is an NMDA-Independent Process Distinct from the Sensory Novelty Encoded by the Mismatch Negativity , 2010, The Journal of Neuroscience.

[15]  I. Nelken,et al.  Stimulus-Specific Adaptation in the Auditory Thalamus of the Anesthetized Rat , 2010, PloS one.

[16]  P. Hof,et al.  Wernicke's area homologue in chimpanzees (Pan troglodytes) and its relation to the appearance of modern human language , 2010, Proceedings of the Royal Society B: Biological Sciences.

[17]  H. Tiitinen,et al.  Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. , 2010, Psychophysiology.

[18]  I. Nelken,et al.  Modeling the auditory scene: predictive regularity representations and perceptual objects , 2009, Trends in Cognitive Sciences.

[19]  Shigang He,et al.  Change detection by thalamic reticular neurons , 2009, Nature Neuroscience.

[20]  Karl J. Friston,et al.  Changing meaning causes coupling changes within higher levels of the cortical hierarchy , 2009, Proceedings of the National Academy of Sciences.

[21]  G. Christianson,et al.  Stimulus-Specific Adaptation Occurs in the Auditory Thalamus , 2009, The Journal of Neuroscience.

[22]  M. Malmierca,et al.  Stimulus-Specific Adaptation in the Inferior Colliculus of the Anesthetized Rat , 2009, The Journal of Neuroscience.

[23]  Karl J. Friston,et al.  The mismatch negativity: A review of underlying mechanisms , 2009, Clinical Neurophysiology.

[24]  H. Terrace,et al.  Comparative metacognition , 2009, Current Opinion in Neurobiology.

[25]  S. Dehaene,et al.  Neural signature of the conscious processing of auditory regularities , 2009, Proceedings of the National Academy of Sciences.

[26]  R. Näätänen,et al.  The mismatch negativity (MMN) in basic research of central auditory processing: A review , 2007, Clinical Neurophysiology.

[27]  István Czigler,et al.  Backward masking and visual mismatch negativity: electrophysiological evidence for memory-based detection of deviant stimuli. , 2007, Psychophysiology.

[28]  M. Schönwiesner,et al.  Heschl's gyrus, posterior superior temporal gyrus, and mid-ventrolateral prefrontal cortex have different roles in the detection of acoustic changes. , 2007, Journal of neurophysiology.

[29]  J. Tanji,et al.  Categorization of behavioural sequences in the prefrontal cortex , 2007, Nature.

[30]  M. Malmierca,et al.  Novelty detector neurons in the mammalian auditory midbrain , 2005, The European journal of neuroscience.

[31]  S. Dehaene,et al.  Timing of the brain events underlying access to consciousness during the attentional blink , 2005, Nature Neuroscience.

[32]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[33]  Mario Dzemidzic,et al.  Neural correlates of auditory sensory memory and automatic change detection , 2004, NeuroImage.

[34]  A. Graybiel,et al.  Representation of Action Sequence Boundaries by Macaque Prefrontal Cortical Neurons , 2003, Science.

[35]  H. Spekreijse,et al.  Masking Interrupts Figure-Ground Signals in V1 , 2002, Journal of Cognitive Neuroscience.

[36]  G. Orban,et al.  Visual Motion Processing Investigated Using Contrast Agent-Enhanced fMRI in Awake Behaving Monkeys , 2001, Neuron.

[37]  I. Winkler,et al.  ‘Primitive intelligence’ in the auditory cortex , 2001, Trends in Neurosciences.

[38]  James K. Kroger,et al.  Cross-modal and cross-temporal association in neurons of frontal cortex , 2000, Nature.

[39]  S L Macknik,et al.  Optical images of visible and invisible percepts in the primary visual cortex of primates. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[40]  E. Yund,et al.  Phonemes, intensity and attention: differential effects on the mismatch negativity (MMN). , 1999, The Journal of the Acoustical Society of America.

[41]  D Morlet,et al.  Mismatch negativity and late auditory evoked potentials in comatose patients , 1999, Clinical Neurophysiology.

[42]  N. Logothetis,et al.  Multistable phenomena: changing views in perception , 1999, Trends in Cognitive Sciences.

[43]  D. V. von Cramon,et al.  Combining electrophysiological and hemodynamic measures of the auditory oddball. , 1999, Psychophysiology.

[44]  Carlos M. Gómez,et al.  The mismatch negativity component reveals the sensory memory during REM sleep in humans , 1997, Neuroscience Letters.

[45]  Karl J. Friston,et al.  Psychophysiological and Modulatory Interactions in Neuroimaging , 1997, NeuroImage.

[46]  A. Cowey,et al.  Blindsight in monkeys , 1995, Nature.

[47]  C. Schroeder,et al.  Detection of stimulus deviance within primate primary auditory cortex: intracortical mechanisms of mismatch negativity (MMN) generation , 1994, Brain Research.

[48]  L. Squire,et al.  P3-like brain waves in normal monkeys and in monkeys with medial temporal lesions. , 1988, Behavioral neuroscience.