Sharp estimates for eigenvalues of integral operators generated by dot product kernels on the sphere

We obtain explicit formulas for the eigenvalues of integral operators generated by continuous dot product kernels defined on the sphere via the usual gamma function. Using them, we present both, a procedure to describe sharp bounds for the eigenvalues and their asymptotic behavior near 0. We illustrate our results with examples, among them the integral operator generated by a Gaussian kernel. Finally, we sketch complex versions of our results to cover the cases when the sphere sits in a Hermitian space.

[1]  Barbara Zwicknagl,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Power Series Kernels Power Series Kernels , 2022 .

[2]  Claus Müller Analysis of Spherical Symmetries in Euclidean Spaces , 1997 .

[3]  C. P. Oliveira,et al.  Annihilating properties of convolution operators on complex spheres , 2005 .

[4]  A. Grothendieck La théorie de Fredholm , 1956 .

[5]  Hongwei Sun,et al.  Positive definite dot product kernels in learning theory , 2005, Adv. Comput. Math..

[6]  M. H. CASTRO,et al.  Eigenvalue decay of positive integral operators on the sphere , 2012, Math. Comput..

[7]  William H. Ruckle,et al.  Nuclear Locally Convex Spaces , 1972 .

[8]  Frank Filbir,et al.  Radial basis functions and corresponding zonal series expansions on the sphere , 2005, J. Approx. Theory.

[9]  N. Bingham Positive definite functions on spheres , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  Yuan Yao,et al.  Mercer's Theorem, Feature Maps, and Smoothing , 2006, COLT.

[11]  Lorenzo Rosasco,et al.  Model Selection for Regularized Least-Squares Algorithm in Learning Theory , 2005, Found. Comput. Math..

[12]  T. Koornwinder The addition formula for jacobi polynomials, 2 : the laplace type integral representation and the product formula , 1972 .

[13]  R. Schaback Multivariate Interpolation by Polynomials and Radial Basis Functions , 2005 .

[14]  S. Smale,et al.  Learning Theory Estimates via Integral Operators and Their Approximations , 2007 .

[15]  I. J. Schoenberg Positive definite functions on spheres , 1942 .

[16]  Eigenvalue and singular value estimates for integral operators: a unifying approach , 2012 .

[17]  Tom H. Koornwinder,et al.  Jacobi Polynomials, III. An Analytic Proof of the Addition Formula , 1975 .

[18]  EIGENVALUE DECAY OF INTEGRAL OPERATORS GENERATED BY POWER SERIES-LIKE KERNELS , 2014 .

[19]  J. C. Ferreira,et al.  Integral operators on the sphere generated by positive definite smooth kernels , 2008, J. Complex..

[20]  A. Wünsche Generalized Zernike or disc polynomials , 2005 .

[21]  H. Groemer Geometric Applications of Fourier Series and Spherical Harmonics , 1996 .

[22]  E. Hille,et al.  On the characteristic values of linear integral equations , 1931, Proceedings of the National Academy of Sciences of the United States of America.