PreMDB, a thermodynamically consistent material database as a key to geodynamic modelling

We present a tool for coupling thermochemistry with mechanics. Thermodynamic potential functions are used to calculate reversible material properties such as thermal expansion coefficient, specific heat, elastic shear modulus, bulk modulus and density. These material properties are thermodynamically self consistent. Transport properties such as thermal conductivity (diffusivity) and melt viscosity are also included, but these are derived from laboratory experiments. The transport properties are included to provide a reference database as a common standard of material properties necessary for comparing geological, geodynamic and geotechnical calculations. We validate the chemically derived elastic material properties by comparing computed seismic velocities for a pyrolitic composition to the seismic models PREM and ak135.

[1]  C. Bina Mantle mineralogy: Olivine emerges from isolation , 1998, Nature.

[2]  S. Hart,et al.  In search of a bulk-Earth composition , 1986 .

[3]  N. Olsen,et al.  Constraining the composition and thermal state of the mantle beneath Europe from inversion of long‐period electromagnetic sounding data , 2006 .

[4]  Charles H. Langmuir,et al.  The chemical composition of subducting sediment and its consequences for the crust and mantle , 1998 .

[5]  C. Langmuir,et al.  Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness , 1987 .

[6]  Ș.,et al.  Seismic Velocities in Mantle Minerals and the Mineralogy of the Upper Mantle , 2022 .

[7]  J. Watt,et al.  The Elastic Properties of Composite Materials , 1976 .

[8]  Jeannot Trampert,et al.  Sensitivities of seismic velocities to temperature, pressure and composition in the lower mantle , 2001 .

[9]  M. Isshiki,et al.  Iron partitioning in a pyrolite mantle and the nature of the 410-km seismic discontinuity , 1998, Nature.

[10]  Lars Stixrude,et al.  Thermodynamics of mantle minerals – I. Physical properties , 2005 .

[11]  P. Kelemen,et al.  Relationship between seismic P‐wave velocity and the composition of anhydrous igneous and meta‐igneous rocks , 2003 .

[12]  C. Sotin,et al.  Computation of seismic profiles from mineral physics: the importance of the non-olivine components for explaining the 660 km depth discontinuity , 1998 .

[13]  Lars Stixrude,et al.  Thermodynamics of mantle minerals - II. Phase equilibria , 2011 .

[14]  Mark S. Ghiorso,et al.  Chemical mass transfer in magmatic processes , 1987 .

[15]  S. Grand Mantle shear–wave tomography and the fate of subducted slabs , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  J. Trampert,et al.  Towards a lower mantle reference temperature and composition , 2004 .

[17]  T. Plank,et al.  Geochemical Fluxes During Seafloor Alteration of the Basaltic Upper Oceanic Crust: DSDP Sites 417 and 418 , 2013 .

[18]  B. Kennett,et al.  How to reconcile body-wave and normal-mode reference earth models , 1996 .

[19]  A. E. Ringwood,et al.  Phase transformations and their bearing on the constitution and dynamics of the mantle , 1991 .

[20]  James A. D. Connolly,et al.  Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation , 2005 .

[21]  M. Ghiorso Chemical mass transfer in magmatic processes , 1985 .

[22]  Y. Dimitrienko,et al.  Elastic properties of composite materials , 2010 .

[23]  Roger Powell,et al.  An internally consistent thermodynamic data set for phases of petrological interest , 1998 .

[24]  D. Weidner,et al.  A mineral physics test of a pyrolite mantle , 1985 .

[25]  S. Saxena Earth mineralogical model: Gibbs free energy minimization computation in the system MgOFeOSiO2 , 1996 .

[26]  A. E. Ringwood,et al.  Phase transformations in a harzburgite composition to 26 GPa: implications for dynamical behaviour of the subducting slab , 1987 .

[27]  L. Stixrude,et al.  Mineralogy and elasticity of the oceanic upper mantle: Origin of the low‐velocity zone , 2005 .

[28]  William J. Chancellor,et al.  Soil Physical Properties , 1994 .

[29]  D. Giardini,et al.  Inferring upper-mantle temperatures from seismic velocities , 2003 .

[30]  H. T. Ozkahraman,et al.  Determination of the thermal conductivity of rock from P-wave velocity , 2004 .

[31]  E. R. Engdahl,et al.  Constraints on seismic velocities in the Earth from traveltimes , 1995 .

[32]  J. Bass,et al.  On the bulk composition of the lower mantle: Predictions and limitations from generalized inversion of radial seismic profiles , 2007 .

[33]  J. Connolly,et al.  Metamorphic controls on seismic velocity of subducted oceanic crust at 100–250 km depth , 2002 .

[34]  J. Bass,et al.  Lower mantle composition and temperature from mineral physics and thermodynamic modelling , 2005 .

[35]  L. Rybach,et al.  Handbook of Terrestrial Heat-Flow Density Determination , 1988 .

[36]  L. Stixrude,et al.  Petrology, elasticity, and composition of the mantle transition zone , 1992 .

[37]  S. Taylor,et al.  The continental crust : its composition and evolution : an examination of the geochemical record preserved in sedimentary rocks , 1985 .

[38]  G. Hoschek Comparison of calculated P-T pseudosections for a kyanite eclogite from the Tauern Window, Eastern Alps, Austria , 2004 .

[39]  James A. D. Connolly,et al.  An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions , 2002 .

[40]  B. Wood,et al.  Olivine‐spinel transitions: Experimental and thermodynamic constraints and implications for the nature of the 400‐km seismic discontinuity , 1987 .

[41]  K. Chambers,et al.  The Nature of the 660-Kilometer Discontinuity in Earth's Mantle from Global Seismic Observations of PP Precursors , 2006, Science.

[42]  C. Bina A note on latent heat release from disequilibrium phase transformations and deep seismogenesis , 1998 .

[43]  R. Poreda,et al.  Sources of nitrogen and methane in Central American geothermal settings: Noble gas and 129I evidence for crustal and magmatic volatile components , 2003 .

[44]  Alfred Edward Ringwood,et al.  Origin of the Earth and Moon , 1979 .

[45]  Youxue Zhang,et al.  Toward a general viscosity equation for natural anhydrous and hydrous silicate melts , 2007 .

[46]  J. Connolly Multivariable phase diagrams; an algorithm based on generalized thermodynamics , 1990 .

[47]  M. Bickle,et al.  The Volume and Composition of Melt Generated by Extension of the Lithosphere , 1988 .

[48]  R. Rudnick,et al.  Nature and composition of the continental crust: A lower crustal perspective , 1995 .

[49]  Renata M. Wentzcovitch,et al.  High‐pressure elastic properties of major materials of Earth's mantle from first principles , 2001 .

[50]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .