Structural chemistry and geochemistry of silver‐sulfur compounds: Critical review

Silver(I) bindss srongly with sulfur(II –) in inorganic and organic species, resulting in picomolal aqueous dissolved concentrations. For sulfur species found in the environment, Ag(I)–S(II) bonding forms a linear di-coordinate arrangement, – S–Ag–S–, which results in long zigzag chains in inorganic (minerals) and organic (thiolate) complexes. Silver(I) forms the neutral complex AgHS0 at low concentration of S(II –) and Ag(I). Polynuclear complexes form in solution above micromolal concentrations of S(II –). Silver(I) polysulfides may be significant at elevated S(II –). A number of organic mercaptans (thiols) are found in anoxic sediments in nanomolal to micromolal levels and these can act as ligands for Ag(I). The surprisingly limited, known properties of Ag(I) complexes (thiolates) of environmental mercaptans are reviewed. In these thiolate complexes in the solid phase, single crystal X-ray diffraction shows that the –S(R)–Ag –S(R)– chains condense to form sheets that further link through silver–silver interactions to create a network, or slab of silver and sulfur atoms. From nuclear magnetic resonance spectroscopic evidence, zigzag chains also form in the solution phase and aggregate in a random manner to form colloids, which are the predominant form of Ag(I) in solution. The most crucial and important aspect of Ag(I) thiolate chemistry is the rapid exchange of Ag(I) among thiolates. This process is a mechanism whereby Ag(I) can transfer onto, or off, particulate materials or the cells of an organism. Silver(I) thiolates also react rapidly with H2S or HS− as ligands to form Ag2S, but the reverse process is poor because of the high aqueous insolubility and stability of A2Ss. This reaction represents a possible final fate for any Ag(I) thiolate formed in natural waters, as well as any Ag(I)–S(II –) species.

[1]  N. Fisher,et al.  Trophic transfer of silver to marine herbivores: A review of recent studies , 1998 .

[2]  R. Hiskey,et al.  Sulfur-Containing Polypeptides. II. Selective Removal of S-Protective Groups from Some L-Cysteinyl-L-cysteine Derivatives1,2 , 1966 .

[3]  I. Dance,et al.  The preparation and crystal structure of an anionic silver pentasulphide chain in ∞[Ag(S5)−](Me4N+) , 1989 .

[4]  A. Frueh The Crystal Structure of Stromeyerite, AgCuS: A Possible Defect Structure , 1954 .

[5]  J. R. Kramer,et al.  Reactivity of Ag+ ion with thiol ligands in the presence of iron sulfide , 1998 .

[6]  P. Cloke The geologic role of polysulfides—Part I The distribution of ionic species in aqueous sodium polysulfide solutions , 1963 .

[7]  Werner Stumm,et al.  Fresh Water and Ocean. (Book Reviews: Aquatic Chemistry. An Introduction Emphasizing Chemical Equilibria in Natural Waters) , 1982 .

[8]  N. C. Kasuga,et al.  Synthesis and characterization of oligomeric, anionic thiomalato-silver(I) complexes with biological activities , 1995 .

[9]  G. Sheldrick,et al.  Synthesis and X-ray structure of [Ag2(Ph2X2)4][AsF6]2(X = S or Se); six-membered silver–sulphur and silver–selenium rings , 1984 .

[10]  E. Stiefel Transition-Metal Sulfur Chemistry: Biological and Industrial Significance and Key Trends , 1997 .

[11]  N. Champness,et al.  Unique structural features in silver(I) dithioether complexes: the single-crystal structures of [Agn(PhSCH2CH2CH2SPh)2n](BF4)n·0.5nH2O and [Agn(MeSCH2CH2CH2SMe)n](BF4)n , 1995 .

[12]  I. Dance On the molecularity of crystalline cyclohexanethiolatosilver(I) , 1977 .

[13]  J. R. Kramer,et al.  Potentiometric Determination of Silver Thiolate Formation Constants Using a Ag2S Electrode , 1999 .

[14]  W. Maccrehan,et al.  Temporal Relationship of Thiols to Inorganic Sulfur Compounds in Anoxic Chesapeake Bay Sediment Porewater , 1995 .

[15]  Å. Olin,et al.  The Crystal Structure of Silver(I) Cyclohexanethiolate. , 1975 .

[16]  J. Boulègue Equilibria in a sulfide rich water from Enghien-les-Bains, France☆ , 1977 .

[17]  K. Kraus,et al.  ADSORPTION ON INORGANIC MATERIALS. VI. REACTION OF INSOLUBLE SULFIDES WITH METAL IONS IN AQUEOUS MEDIA. , 1965, Journal of chromatography.

[18]  J. Garnier,et al.  Distribution of Trace Elements Associated with Dissolved Compounds (<0.45 μm−1 nm) in Freshwater Using Coupled (Frontal Cascade) Ultrafiltration and Chromatographic Separations , 1998 .

[19]  G. Schwarzenbach,et al.  Silbermercaptide und ‐mercaptokomplexe , 1971 .

[20]  A. Baici,et al.  Interaction of the human leukocyte proteinases elastase and cathepsin G with gold, silver and copper compounds. , 1984, Biochemical pharmacology.

[21]  W. Giggenbach Optical spectra and equilibrium distribution of polysulfide ions in aqueous solution at 20.deg. , 1972 .

[22]  P. Santschi,et al.  Colloidal and Particulate Silver in River and Estuarine Waters of Texas , 1997 .

[23]  A. Müller,et al.  (PPH4)4[AG2S20].S8, AN UNUSUAL VERY SULFUR-RICH COMPOUND , 1984 .

[24]  A. Müller,et al.  [AG2(S6)2]2- (WITH A NOVEL CYCLIC INORGANIC RING-SYSTEM), [AG(S9)]- AND (PPH4)(NH4)S7.CH3CN WITH AN UNUSUAL CONFORMATION OF THE HEPTASULFIDE ION , 1984 .

[25]  A. Russell Flegal,et al.  Anthropogenic silver in the Southern California Bight: a new tracer of sewage in coastal waters , 1992 .

[26]  A. Frueh The Crystallography of Silver Sulfide, Ag2S , 1958 .

[27]  A. Flegal,et al.  Silver in San Francisco Bay estuarine waters , 1993 .

[28]  S. Luoma,et al.  Influence of seasonal growth, age, and environmental exposure on Cu and Ag in a bivalve indicator, Macoma balthica, in San Francisco Bay , 1990 .

[29]  P. Cloke The geologic role of polysulfides—Part II: The solubility of acanthite and covellite in sodium polysulfide solutions , 1963 .

[30]  P. J. Peterson,et al.  Silver and other metals in some aquatic bryophytes from streams in the lead mining district of Mid-Wales, Great Britain , 1985 .

[31]  J. Zubieta,et al.  Steric control of aggregation in neutral silver(I) thiolates, [AgSR]n. Crystal and molecular structures of [AgSCH(SiMe3)2]8, a discrete molecular biscycle of weakly interacting [AgSCH(SiMe3)2]4 units, and of [AgSC(SiPhMe2)3]3 and [AgSC(SiMe3)3] ... , 1987 .

[32]  G. M. Bennett CCLVII.—Monothioethylene glycol , 1922 .

[33]  N. C. Kasuga,et al.  Synthesis and characterization of polymeric, anionic thiosalicylato-Ag(I) complexes with antimicrobial activities , 1995 .

[34]  L. Andersson Study of some silver‐thiol complexes and polymers: Stoichiometry and optical effects , 1972 .

[35]  B. Berthet,et al.  Bioaccumulation, toxicity and physico-chemical speciation of silver in bivalve molluscs: ecotoxicological and health consequences , 1992 .

[36]  D. Winge,et al.  Copper- and silver-substituted yeast metallothioneins: sequential 1H NMR assignments reflecting conformational heterogeneity at the C terminus. , 1993, Biochemistry.

[37]  I. Dance The structural chemistry of metal thiolate complexes , 1986 .

[38]  Martin M. Shafer,et al.  Removal, partitioning, and fate of silver and other metals in wastewater treatment plants and effluent‐receiving streams , 1998 .

[39]  W. Maccrehan,et al.  Role of biogenic thiols in the solubility of sulfide minerals , 1988 .

[40]  H. Nakatsuji,et al.  Correlation between metal NMR physical quantities and structures of metal complexes. I. 109Ag NMR spectroscopy of aqueous silver ions coordinated with nitroxide radical , 1985 .

[41]  J. R. Kramer,et al.  Formation of volatile sulfides in freshwater environments , 1994 .

[42]  W. Gutknecht,et al.  Direct potentiometric measurement of several thiols , 1975 .

[43]  A. Martell,et al.  METAL CHELATES OF SOME SULFUR-CONTAINING AMINO ACIDS. , 1964, Biochemistry.

[44]  Chris P. Miller,et al.  Metal Complexes of Marine Peptide Metabolites: A Novel Ag4 Cluster , 1994 .

[45]  H. Beinert,et al.  Iron-sulfur clusters: nature's modular, multipurpose structures. , 1997, Science.

[46]  B. F. Taylor,et al.  OCCURRENCE OF PARTICLE-BOUND POLYSULFIDES AND SIGNIFICANCE OF THEIR REACTION WITH ORGANIC MATTERS IN MARINE SEDIMENTS , 1992 .

[47]  D. Vorländer,et al.  Über Triphenyl‐thiocarbinol , 1913 .

[48]  B. Ahner,et al.  Phytochelatin production in marine algae. 1. An interspecies comparison , 1995 .

[49]  L. Ehrenberg,et al.  The Equilibrium between Elementary Sulfur and Aqueous Polysulfide Solutions. , 1971 .

[50]  G. Schwarzenbach,et al.  Die Löslichkeit von Metallsulfiden II. Silbersulfid [1] , 1966 .

[51]  L. Zervas,et al.  On Cysteine and Cystine Peptides. I. New S-Protecting Groups for Cysteine , 1962 .

[52]  I. Dance,et al.  The intertwined double-(-AgSR-).infin.-strand chain structure of crystalline (3-methylpentane-3-thiolato) silver, in relation to (AgSr)8 molecules in solution , 1983 .

[53]  B. Krebs,et al.  Transition‐Metal Thiolates: From Molecular Fragments of Sulfidic Solids to Models for Active Centers in Biomolecules , 1991 .

[54]  Arthur E. Martell,et al.  Other Organic Ligands , 1977 .

[55]  I. Dance,et al.  Layered structure of crystalline compounds silver thiolates (AgSR) , 1991 .

[56]  A. Müller,et al.  Über [Ag(S9)]−, ein symmetrisches zehngliedriges Ringsystem Darstellung, Struktur und spektroskopische Charakterisierung der schwefelreichen Verbindung [(PPh3)2N][Ag(S9)] · S8 , 1986 .

[57]  H. Podsiadły,et al.  Complexes of Ag(I) with ligands containing sulphur donor atoms , 1986 .

[58]  M. Bit-Alkhas,et al.  Effect of formation of insoluble polysilver salts on argentometric titration of mercaptoacids. , 1960, Analytical biochemistry.

[59]  S. Licht,et al.  Disproportionation of Aqueous Sulfur and Sulfide: Kinetics of Polysulfide Decomposition , 1997 .

[60]  K. Nomiya,et al.  Characterization by electrospray ionization (ESI) mass spectrometry of an oligomeric, anionic thiomalato-silver(I) complex showing biological activity , 1995 .