Robust Kalman Filtering for Discrete-Time Systems With Measurement Delay

This brief is concerned with robust Kalman filtering for linear discrete-time systems with both instantaneous and single delayed measurements. The norm-bounded parameter uncertainties enter into the system matrix of the state space model. A new approach through the re-organization of measurements is proposed to improve the efficiency of computation. A sufficient condition for the existence of a robust Kalman filter is derived. The performance is clearly demonstrated through analytical results and simulation experiments.

[1]  D. McFarlane,et al.  Optimal guaranteed cost control and filtering for uncertain linear systems , 1994, IEEE Trans. Autom. Control..

[2]  G. Nicolao,et al.  Optimal design of robust predictors for linear discrete-time systems , 1995 .

[3]  Xiao Lu,et al.  Kalman filtering for multiple time-delay systems , 2005, Autom..

[4]  Uri Shaked,et al.  Robust minimum variance filtering , 1995, IEEE Trans. Signal Process..

[5]  Lihua Xie,et al.  Robust Kalman filter design , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[6]  Xiao Lu,et al.  Robust Kalman Filtering for Discrete-time Systems with Measurement Delay , 2006, WCICA 2006.

[7]  Vu Ngoc Phat,et al.  Robust stability and stabilizability of uncertain linear hybrid systems with state delays , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[8]  Fuwen Yang,et al.  Robust H/sub 2/ filtering for a class of systems with stochastic nonlinearities , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[9]  D. McFarlane,et al.  Optimal guaranteed cost filtering for uncertain discrete-time linear systems , 1996 .

[10]  Lihua Xie,et al.  H Infinity Fixed-lag Smoothing for Linear Time-varying Discrete Time Systems , 2005 .

[11]  Uri Shaked,et al.  Robust discrete-time minimum-variance filtering , 1996, IEEE Trans. Signal Process..

[12]  P. Shi,et al.  Guaranteed cost control of uncertain discrete-time systems with delay in state , 1999 .

[13]  Lihua Xie,et al.  A unified approach to linear estimation for discrete-time systems. II. H/sub /spl infin// estimation , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[14]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[15]  Daizhan Cheng,et al.  Optimal estimation for continuous-time systems with delayed measurements , 2006, IEEE Trans. Autom. Control..

[16]  Lihua Xie,et al.  Robust Kalman filtering for uncertain discrete-time systems , 1994, IEEE Trans. Autom. Control..

[17]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[18]  Patrizio Colaneri,et al.  Finite escapes and convergence properties of guaranteed-cost robust filters , 1997, Autom..

[19]  Zhi-Quan Luo,et al.  Finite-horizon robust Kalman filter design , 2001, IEEE Trans. Signal Process..

[20]  David Zhang,et al.  Hinfinity Fixed-lag smoothing for discrete linear time-varying systems , 2005, Autom..

[21]  Lihua Xie,et al.  New approaches to robust minimum variance filter design , 2001, IEEE Trans. Signal Process..

[22]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .

[23]  José Claudio Geromel,et al.  Optimal linear filtering under parameter uncertainty , 1999, IEEE Trans. Signal Process..

[24]  Asoke K. Nandi,et al.  Robust super-exponential methods for blind equalization in the presence of Gaussian noise , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[25]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[26]  Lihua Xie,et al.  Design and analysis of discrete-time robust Kalman filters , 2002, Autom..

[27]  Minyue Fu,et al.  A linear matrix inequality approach to robust H∞ filtering , 1997, IEEE Trans. Signal Process..