An integrated approach to helicopter planetary gear fault diagnosis and failure prognosis

This paper introduces the design of an integrated framework for on-board fault diagnosis and failure prognosis of a helicopter transmission component, and describes briefly its main modules. It suggests means to (1) validate statistically and pre-process sensor data (vibration), (2) integrate model-based diagnosis and prognosis, (3) extract useful features or condition indicators from data de-noised by blind deconvolution, and (4) combine Bayesian estimation algorithms and measurements to detect and identify the fault and predict remaining useful life with specified confidence and minimum false alarms.