Fundamental bound on the reliability of quantum information transmission
暂无分享,去创建一个
[1] Sergio Verdú,et al. Generalizing the Fano inequality , 1994, IEEE Trans. Inf. Theory.
[2] D. A. Bell,et al. Information Theory and Reliable Communication , 1969 .
[3] H. Nagaoka,et al. Strong converse theorems in the quantum information theory , 1999, 1999 Information Theory and Networking Workshop (Cat. No.99EX371).
[4] M. Nielsen,et al. Information transmission through a noisy quantum channel , 1997, quant-ph/9702049.
[5] H. Vincent Poor,et al. Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.
[6] Charles H. Bennett,et al. Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[7] Imre Csiszár. Generalized cutoff rates and Renyi's information measures , 1995, IEEE Trans. Inf. Theory.
[8] T. Beth,et al. Codes for the quantum erasure channel , 1996, quant-ph/9610042.
[9] M. Ruskai,et al. Monotone Riemannian metrics and relative entropy on noncommutative probability spaces , 1998, math-ph/9808016.
[10] 林 正人. Quantum information : an introduction , 2006 .
[11] F. Hiai,et al. Quantum f-divergences and error correction , 2010, 1008.2529.
[12] Suguru Arimoto,et al. On the converse to the coding theorem for discrete memoryless channels (Corresp.) , 1973, IEEE Trans. Inf. Theory.
[13] J. Hull. Options, Futures, and Other Derivatives , 1989 .
[14] Naresh Sharma. Equality conditions for the quantum f-relative entropy and generalized data processing inequalities , 2010, ISIT.
[15] S. Lloyd. Capacity of the noisy quantum channel , 1996, quant-ph/9604015.
[16] A.S.Holevo. The Capacity of Quantum Channel with General Signal States , 1996, quant-ph/9611023.
[17] Rudolf Ahlswede,et al. Strong converse for identification via quantum channels , 2000, IEEE Trans. Inf. Theory.
[18] Naresh Sharma. Extensions of the quantum Fano inequality , 2008 .
[19] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[20] S. Verdú,et al. Arimoto channel coding converse and Rényi divergence , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[21] Robert G. Gallager,et al. A simple derivation of the coding theorem and some applications , 1965, IEEE Trans. Inf. Theory.
[22] Fan Jing,et al. Appendix Proof of Lemma 1 : , 2013 .
[23] Andreas J. Winter,et al. Random quantum codes from Gaussian ensembles and an uncertainty relation , 2007, Open Syst. Inf. Dyn..
[24] Alexander S. Holevo,et al. The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.
[25] C. H. Bennett,et al. Capacities of Quantum Erasure Channels , 1997, quant-ph/9701015.
[26] Richard E. Blahut. Information bounds of the Fano-Kullback type , 1976, IEEE Trans. Inf. Theory.
[27] M. Hastings. Superadditivity of communication capacity using entangled inputs , 2009 .
[28] Tomohiro Ogawa,et al. Strong converse and Stein's lemma in quantum hypothesis testing , 2000, IEEE Trans. Inf. Theory.
[29] Sue Omel,et al. PERIOD , 1996, SIGGRAPH Visual Proceedings.
[30] Mark M. Wilde,et al. From Classical to Quantum Shannon Theory , 2011, ArXiv.
[31] Rudolf Ahlswede,et al. A Strong Converse Theorem for Quantum Multiple Access Channels , 2005, Electron. Notes Discret. Math..
[32] Noelle Foreshaw. Options… , 2010 .
[33] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[34] Te Sun Han,et al. The strong converse theorem for hypothesis testing , 1989, IEEE Trans. Inf. Theory.
[35] S. Wehner,et al. A strong converse for classical channel coding using entangled inputs. , 2009, Physical review letters.
[36] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[37] K. Audenaert,et al. Discriminating States: the quantum Chernoff bound. , 2006, Physical review letters.
[38] Schumacher,et al. Quantum data processing and error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[39] Schumacher,et al. Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[40] Milán Mosonyi,et al. On the Quantum Rényi Relative Entropies and Related Capacity Formulas , 2009, IEEE Transactions on Information Theory.
[41] J. Wolfowitz. Coding Theorems of Information Theory , 1962, Ergebnisse der Mathematik und Ihrer Grenzgebiete.
[42] Imre Csiszár,et al. Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .
[43] R. Sibson. Information radius , 1969 .
[44] Igor Devetak. The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.
[45] T. Dorlas,et al. Invalidity of a strong capacity for a quantum channel with memory , 2011, 1108.4282.
[46] I. Csiszár. A class of measures of informativity of observation channels , 1972 .
[47] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[48] J. Leinaas,et al. Extreme points of the set of density matrices with positive partial transpose , 2007, 0704.3348.
[49] Tomohiro Ogawa,et al. Strong converse to the quantum channel coding theorem , 1999, IEEE Trans. Inf. Theory.
[50] Howard Barnum,et al. On quantum fidelities and channel capacities , 2000, IEEE Trans. Inf. Theory.
[51] Andreas J. Winter,et al. Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.