Fundamental bound on the reliability of quantum information transmission

Information theory tells us that if the rate of sending information across a noisy channel were above the capacity of that channel, then the transmission would necessarily be unreliable. For classical information sent over classical or quantum channels, one could, under certain conditions, make a stronger statement that the reliability of the transmission shall decay exponentially to zero with the number of channel uses, and the proof of this statement typically relies on a certain fundamental bound on the reliability of the transmission. Such a statement or the bound has never been given for sending quantum information. We give this bound and then use it to give the first example where the reliability of sending quantum information at rates above the capacity decays exponentially to zero. We also show that our framework can be used for proving generalized bounds on the reliability.

[1]  Sergio Verdú,et al.  Generalizing the Fano inequality , 1994, IEEE Trans. Inf. Theory.

[2]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[3]  H. Nagaoka,et al.  Strong converse theorems in the quantum information theory , 1999, 1999 Information Theory and Networking Workshop (Cat. No.99EX371).

[4]  M. Nielsen,et al.  Information transmission through a noisy quantum channel , 1997, quant-ph/9702049.

[5]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[6]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[7]  Imre Csiszár Generalized cutoff rates and Renyi's information measures , 1995, IEEE Trans. Inf. Theory.

[8]  T. Beth,et al.  Codes for the quantum erasure channel , 1996, quant-ph/9610042.

[9]  M. Ruskai,et al.  Monotone Riemannian metrics and relative entropy on noncommutative probability spaces , 1998, math-ph/9808016.

[10]  林 正人 Quantum information : an introduction , 2006 .

[11]  F. Hiai,et al.  Quantum f-divergences and error correction , 2010, 1008.2529.

[12]  Suguru Arimoto,et al.  On the converse to the coding theorem for discrete memoryless channels (Corresp.) , 1973, IEEE Trans. Inf. Theory.

[13]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[14]  Naresh Sharma Equality conditions for the quantum f-relative entropy and generalized data processing inequalities , 2010, ISIT.

[15]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[16]  A.S.Holevo The Capacity of Quantum Channel with General Signal States , 1996, quant-ph/9611023.

[17]  Rudolf Ahlswede,et al.  Strong converse for identification via quantum channels , 2000, IEEE Trans. Inf. Theory.

[18]  Naresh Sharma Extensions of the quantum Fano inequality , 2008 .

[19]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[20]  S. Verdú,et al.  Arimoto channel coding converse and Rényi divergence , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[21]  Robert G. Gallager,et al.  A simple derivation of the coding theorem and some applications , 1965, IEEE Trans. Inf. Theory.

[22]  Fan Jing,et al.  Appendix Proof of Lemma 1 : , 2013 .

[23]  Andreas J. Winter,et al.  Random quantum codes from Gaussian ensembles and an uncertainty relation , 2007, Open Syst. Inf. Dyn..

[24]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[25]  C. H. Bennett,et al.  Capacities of Quantum Erasure Channels , 1997, quant-ph/9701015.

[26]  Richard E. Blahut Information bounds of the Fano-Kullback type , 1976, IEEE Trans. Inf. Theory.

[27]  M. Hastings Superadditivity of communication capacity using entangled inputs , 2009 .

[28]  Tomohiro Ogawa,et al.  Strong converse and Stein's lemma in quantum hypothesis testing , 2000, IEEE Trans. Inf. Theory.

[29]  Sue Omel,et al.  PERIOD , 1996, SIGGRAPH Visual Proceedings.

[30]  Mark M. Wilde,et al.  From Classical to Quantum Shannon Theory , 2011, ArXiv.

[31]  Rudolf Ahlswede,et al.  A Strong Converse Theorem for Quantum Multiple Access Channels , 2005, Electron. Notes Discret. Math..

[32]  Noelle Foreshaw Options… , 2010 .

[33]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[34]  Te Sun Han,et al.  The strong converse theorem for hypothesis testing , 1989, IEEE Trans. Inf. Theory.

[35]  S. Wehner,et al.  A strong converse for classical channel coding using entangled inputs. , 2009, Physical review letters.

[36]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[37]  K. Audenaert,et al.  Discriminating States: the quantum Chernoff bound. , 2006, Physical review letters.

[38]  Schumacher,et al.  Quantum data processing and error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[39]  Schumacher,et al.  Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[40]  Milán Mosonyi,et al.  On the Quantum Rényi Relative Entropies and Related Capacity Formulas , 2009, IEEE Transactions on Information Theory.

[41]  J. Wolfowitz Coding Theorems of Information Theory , 1962, Ergebnisse der Mathematik und Ihrer Grenzgebiete.

[42]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[43]  R. Sibson Information radius , 1969 .

[44]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[45]  T. Dorlas,et al.  Invalidity of a strong capacity for a quantum channel with memory , 2011, 1108.4282.

[46]  I. Csiszár A class of measures of informativity of observation channels , 1972 .

[47]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[48]  J. Leinaas,et al.  Extreme points of the set of density matrices with positive partial transpose , 2007, 0704.3348.

[49]  Tomohiro Ogawa,et al.  Strong converse to the quantum channel coding theorem , 1999, IEEE Trans. Inf. Theory.

[50]  Howard Barnum,et al.  On quantum fidelities and channel capacities , 2000, IEEE Trans. Inf. Theory.

[51]  Andreas J. Winter,et al.  Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.