A quantum improvement to the gravitational collapse of radiating stars

Based on previous works by Bonanno and Reuter (2000 Phys. Rev. D 62 043008, 2006 Phys. Rev. D 73 083005) we postulate a renormalization group-improved solution for the exterior of a collapsing object that emits radiation. We show that, contrary to Vaidya's radiating solution, backscattered radiation is bounded in the eikonal approximation, so that this solution provides us with a more consistent description of the last stages of collapse. We also show its limitations as the exterior of collapsing stars endowed with very high negative pressures. Finally, we are able to describe the profile of the luminosity of a collapsing object as seen by a far away observer in situations where Vaidya's solution cannot deliver an admissible answer. We illustrate this with models for the collapse of scalar fields where such a profile had not been possible to obtain so far.

[1]  R. W. Lindquist,et al.  Vaidya's Radiating Schwarzschild Metric , 1965 .

[2]  J. Griffiths Neutrino radiation in spherically-symmetric gravitational fields. III. Comparison with photon radiation fields , 1974 .

[3]  C. Wetterich,et al.  Exact evolution equation for scalar electrodynamics , 1994 .

[4]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[5]  K. Lake,et al.  Collapse of radiating fluid spheres , 1981 .

[6]  Spherically symmetric models for charged radiating stars and voids: Theoretical approach , 2002, gr-qc/0206076.

[7]  Alfio Bonanno,et al.  Spacetime structure of an evaporating black hole in quantum gravity , 2006 .

[8]  H. Bondi The contraction of gravitating spheres , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[9]  F. Fayos,et al.  General matching of two spherically symmetric spacetimes. , 1996, Physical review. D, Particles and fields.

[10]  R. Torres Some aspects of bubbles and voids in a cosmological context , 2005 .

[11]  P. Joshi,et al.  On trapped surface formation in gravitational collapse , 2007, 0711.0426.

[12]  F. Fayos,et al.  Spherically symmetric models for stars and voids II: constraints on the radial pressures , 2004 .

[13]  M. Choptuik,et al.  Universality and scaling in gravitational collapse of a massless scalar field. , 1993, Physical review letters.

[14]  G. Ellis,et al.  Exact scalar field cosmologies , 1991 .

[15]  F. Fayos,et al.  On the extension of Vaidya and Vaidya-Reissner-Nordström spacetimes , 1995 .

[16]  Hermann Bondi,et al.  Gravitational waves in general relativity, VII. Waves from axi-symmetric isolated system , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[17]  Roberto Giamb'o Gravitational collapse of homogeneous scalar fields , 2005, gr-qc/0501013.

[18]  F. Fayos,et al.  Local behaviour of evaporating stars and black holes around the total evaporation event , 2010 .

[19]  M. Reuter,et al.  Cosmology of the Planck era from a renormalization group for quantum gravity , 2002 .

[20]  W. Bonnor,et al.  Radiating spherical collapse , 1989 .

[21]  Fayos,et al.  Interiors of Vaidya's radiating metric: Gravitational collapse. , 1992, Physical review. D, Particles and fields.

[22]  D. Christodoulou Examples of naked singularity formation in the gravitational collapse of a scalar field , 1994 .

[23]  P. C. Vaidya The gravitational field of a radiating star , 1951 .

[24]  R. Herrera Construcción de modelos de estrellas y burbujas de vacío o radiativas en el marco de la relatividad general: un planteamiento global , 2001 .

[25]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[26]  J. Oppenheimer,et al.  On Continued Gravitational Contraction , 1939 .

[27]  F. Fayos,et al.  A class of interiors for Vaidya's radiating metric: singularity-free gravitational collapse , 2008 .

[28]  W. Israel Singular hypersurfaces and thin shells in general relativity , 1966 .

[29]  K. Lake,et al.  Backscattered radiation in the Vaidya metric near zero mass , 1986 .

[30]  J. Carminati,et al.  Algebraic invariants of the Riemann tensor in a four‐dimensional Lorentzian space , 1991 .

[31]  Renormalization group improved black hole spacetimes , 2000, hep-th/0002196.

[32]  W. Press,et al.  Radiation fields in the Schwarzschild background , 1973 .

[33]  Backscattering of electromagnetic and gravitational waves off Schwarzschild geometry , 2001, gr-qc/0105042.

[34]  F. Fayos,et al.  Spherically symmetric models for charged stars and voids: I. Charge bound , 2003 .