A quantum improvement to the gravitational collapse of radiating stars
暂无分享,去创建一个
Ramon Torres | F. Fayos | R. Torres | F Fayos
[1] R. W. Lindquist,et al. Vaidya's Radiating Schwarzschild Metric , 1965 .
[2] J. Griffiths. Neutrino radiation in spherically-symmetric gravitational fields. III. Comparison with photon radiation fields , 1974 .
[3] C. Wetterich,et al. Exact evolution equation for scalar electrodynamics , 1994 .
[4] C. Wetterich,et al. Exact evolution equation for the effective potential , 1993, 1710.05815.
[5] K. Lake,et al. Collapse of radiating fluid spheres , 1981 .
[6] Spherically symmetric models for charged radiating stars and voids: Theoretical approach , 2002, gr-qc/0206076.
[7] Alfio Bonanno,et al. Spacetime structure of an evaporating black hole in quantum gravity , 2006 .
[8] H. Bondi. The contraction of gravitating spheres , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[9] F. Fayos,et al. General matching of two spherically symmetric spacetimes. , 1996, Physical review. D, Particles and fields.
[10] R. Torres. Some aspects of bubbles and voids in a cosmological context , 2005 .
[11] P. Joshi,et al. On trapped surface formation in gravitational collapse , 2007, 0711.0426.
[12] F. Fayos,et al. Spherically symmetric models for stars and voids II: constraints on the radial pressures , 2004 .
[13] M. Choptuik,et al. Universality and scaling in gravitational collapse of a massless scalar field. , 1993, Physical review letters.
[14] G. Ellis,et al. Exact scalar field cosmologies , 1991 .
[15] F. Fayos,et al. On the extension of Vaidya and Vaidya-Reissner-Nordström spacetimes , 1995 .
[16] Hermann Bondi,et al. Gravitational waves in general relativity, VII. Waves from axi-symmetric isolated system , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[17] Roberto Giamb'o. Gravitational collapse of homogeneous scalar fields , 2005, gr-qc/0501013.
[18] F. Fayos,et al. Local behaviour of evaporating stars and black holes around the total evaporation event , 2010 .
[19] M. Reuter,et al. Cosmology of the Planck era from a renormalization group for quantum gravity , 2002 .
[20] W. Bonnor,et al. Radiating spherical collapse , 1989 .
[21] Fayos,et al. Interiors of Vaidya's radiating metric: Gravitational collapse. , 1992, Physical review. D, Particles and fields.
[22] D. Christodoulou. Examples of naked singularity formation in the gravitational collapse of a scalar field , 1994 .
[23] P. C. Vaidya. The gravitational field of a radiating star , 1951 .
[24] R. Herrera. Construcción de modelos de estrellas y burbujas de vacío o radiativas en el marco de la relatividad general: un planteamiento global , 2001 .
[25] Martin Reuter,et al. Nonperturbative evolution equation for quantum gravity , 1998 .
[26] J. Oppenheimer,et al. On Continued Gravitational Contraction , 1939 .
[27] F. Fayos,et al. A class of interiors for Vaidya's radiating metric: singularity-free gravitational collapse , 2008 .
[28] W. Israel. Singular hypersurfaces and thin shells in general relativity , 1966 .
[29] K. Lake,et al. Backscattered radiation in the Vaidya metric near zero mass , 1986 .
[30] J. Carminati,et al. Algebraic invariants of the Riemann tensor in a four‐dimensional Lorentzian space , 1991 .
[31] Renormalization group improved black hole spacetimes , 2000, hep-th/0002196.
[32] W. Press,et al. Radiation fields in the Schwarzschild background , 1973 .
[33] Backscattering of electromagnetic and gravitational waves off Schwarzschild geometry , 2001, gr-qc/0105042.
[34] F. Fayos,et al. Spherically symmetric models for charged stars and voids: I. Charge bound , 2003 .