Interactive Evolutionary Algorithms with Decision-Maker's Preferences for Solving Interval Multi-objective Optimization Problems

Multi-objective optimization problems (MOPs) with interval parameters are considerably popular and important in real-world applications. A novel evolutionary algorithm incorporating with a decision-maker (DM)’s preferences is presented to obtain their Pareto subsets which meet the DM’s preferences in this study. The proposed algorithm is applied to four MOPs with interval parameters and compared with other two algorithms. The experimental results confirm the advantages of the proposed algorithm.

[1]  Ashutosh Tiwari,et al.  Ergonomic Chair Design by Fusing Qualitative and Quantitative Criteria Using Interactive Genetic Algorithms , 2008, IEEE Transactions on Evolutionary Computation.

[2]  Khaled Ghédira,et al.  The r-Dominance: A New Dominance Relation for Interactive Evolutionary Multicriteria Decision Making , 2010, IEEE Transactions on Evolutionary Computation.

[3]  Torsten Bertram,et al.  Interactive Incorporation of User Preferences in Multiobjective Evolutionary Algorithms , 2009 .

[4]  Nasser E. Nahi,et al.  Bounding Filter: A Simple Solution to Lack of Exact a Priori Statistics , 1978, Inf. Control..

[5]  Xiaoping Ma,et al.  Solving optimization problems with intervals and hybrid indices using evolutionary algorithms , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[6]  Philipp Limbourg,et al.  An optimization algorithm for imprecise multi-objective problem functions , 2005, 2005 IEEE Congress on Evolutionary Computation.

[7]  K. Miettinen,et al.  Incorporating preference information in interactive reference point methods for multiobjective optimization , 2009 .

[8]  Wang Rui The Evolutionary Multi-Objective Optimization Algorithm with Maximization of Personal Preference , 2010 .

[9]  Kaisa Miettinen,et al.  Experiments with classification-based scalarizing functions in interactive multiobjective optimization , 2006, Eur. J. Oper. Res..

[10]  Yang Dong Clone Selection Algorithm to Solve Preference Multi-Objective Optimization , 2010 .

[11]  Eun-Soo Kim,et al.  Preference-Based Solution Selection Algorithm for Evolutionary Multiobjective Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[12]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[13]  Yong Zhang,et al.  Environmental/economic power dispatch using a hybrid multi-objective optimization algorithm , 2010 .

[14]  Zhou Yonga Evolutionary optimization methods for hybrid index optimization problems and application , 2007 .

[15]  Lily Rachmawati,et al.  Incorporating the Notion of Relative Importance of Objectives in Evolutionary Multiobjective Optimization , 2010, IEEE Transactions on Evolutionary Computation.

[16]  Lothar Thiele,et al.  A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization , 2009, Evolutionary Computation.

[17]  Hu Wei-li A Multi-objective Optimization Genetic Algorithm Incorporating Preference Information , 2007 .

[18]  Jürgen Branke,et al.  Consideration of Partial User Preferences in Evolutionary Multiobjective Optimization , 2008, Multiobjective Optimization.

[19]  Kalyanmoy Deb,et al.  An interactive evolutionary multi-objective optimization and decision making procedure , 2010, Appl. Soft Comput..

[20]  Kalyanmoy Deb,et al.  Interactive evolutionary multi-objective optimization and decision-making using reference direction method , 2007, GECCO '07.

[21]  Xiaoyan Sun,et al.  Evolutionary algorithms for multi-objective optimization problems with interval parameters , 2010, 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA).

[22]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[23]  Heike Trautmann,et al.  Integration of Preferences in Hypervolume-Based Multiobjective Evolutionary Algorithms by Means of Desirability Functions , 2010, IEEE Transactions on Evolutionary Computation.

[24]  Oscar Castillo,et al.  Multiple Objective Genetic Algorithms for Path-planning Optimization in Autonomous Mobile Robots , 2006, Soft Comput..

[25]  Carlos A. Coello Coello,et al.  g-dominance: Reference point based dominance for multiobjective metaheuristics , 2009, Eur. J. Oper. Res..

[26]  Kalyanmoy Deb,et al.  An Interactive Evolutionary Multiobjective Optimization Method Based on Progressively Approximated Value Functions , 2010, IEEE Transactions on Evolutionary Computation.

[27]  Dun-Wei Gong,et al.  Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems , 2013, Inf. Sci..

[28]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[29]  Michael R. Lyu,et al.  A novel adaptive sequential niche technique for multimodal function optimization , 2006, Neurocomputing.

[30]  De-Shuang Huang,et al.  A novel full structure optimization algorithm for radial basis probabilistic neural networks , 2006, Neurocomputing.

[31]  Maoguo Gong,et al.  Clone Selection Algorithm to Solve Preference Multi-Objective Optimization: Clone Selection Algorithm to Solve Preference Multi-Objective Optimization , 2010 .