Mixing Time Estimation in Reversible Markov Chains from a Single Sample Path
暂无分享,去创建一个
Csaba Szepesvári | Aryeh Kontorovich | Daniel J. Hsu | David A. Levin | Yuval Peres | Geoffrey Wolfer | Daniel Hsu | Csaba Szepesvari | Y. Peres | D. A. Levin | A. Kontorovich | Geoffrey Wolfer
[1] S. Varadhan,et al. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions , 1986 .
[2] Don R. Hush,et al. Learning from dependent observations , 2007, J. Multivar. Anal..
[3] Yves F. Atchad'e. Markov chain monte carlo: Confidence intervals , 2016 .
[4] V. Climenhaga. Markov chains and mixing times , 2013 .
[5] D. Freedman. On Tail Probabilities for Martingales , 1975 .
[6] Ronitt Rubinfeld,et al. Testing Closeness of Discrete Distributions , 2010, JACM.
[7] Joel A. Tropp,et al. An Introduction to Matrix Concentration Inequalities , 2015, Found. Trends Mach. Learn..
[8] Gregory Valiant,et al. Testing Closeness With Unequal Sized Samples , 2015, NIPS.
[9] Bryan L. Shader,et al. Applications of Paz's inequality to perturbation bounds for Markov chains , 1998 .
[10] Benjamin M. Gyori,et al. Non-asymptotic confidence intervals for MCMC in practice , 2012, 1212.2016.
[11] Maria-Florina Balcan,et al. Agnostic active learning , 2006, J. Comput. Syst. Sci..
[12] Richard L. Smith,et al. Estimating the second largest eigenvalue of a Markov transition matrix , 2000 .
[13] L. V. D. Heyden,et al. Perturbation bounds for the stationary probabilities of a finite Markov chain , 1984 .
[14] Galin L. Jones,et al. Implementing MCMC: Estimating with Confidence , 2011 .
[15] S. Bernstein. Sur l'extension du théoréme limite du calcul des probabilités aux sommes de quantités dépendantes , 1927 .
[16] Richard S. Sutton,et al. Introduction to Reinforcement Learning , 1998 .
[17] Andreas Christmann,et al. Fast Learning from Non-i.i.d. Observations , 2009, NIPS.
[18] Gábor Lugosi,et al. Introduction to Statistical Learning Theory , 2004, Advanced Lectures on Machine Learning.
[19] Csaba Szepesvári,et al. Empirical Bernstein stopping , 2008, ICML '08.
[20] David Gamarnik. Extension of the PAC framework to finite and countable Markov chains , 2003, IEEE Trans. Inf. Theory.
[21] Xiaoji Liu,et al. On the continuity of the group inverse , 2012 .
[22] D. Paulin. Concentration inequalities for Markov chains by Marton couplings and spectral methods , 2012, 1212.2015.
[23] Mehryar Mohri,et al. Rademacher Complexity Bounds for Non-I.I.D. Processes , 2008, NIPS.
[24] Yimin Wei,et al. An improvement on the perturbation of the group inverse and oblique projection , 2001 .
[25] Cosma Rohilla Shalizi,et al. Estimating beta-mixing coefficients , 2011, AISTATS.
[26] Elchanan Mossel,et al. The Computational Complexity of Estimating Convergence Time , 2010, ArXiv.
[27] J. Meyer. The Role of the Group Generalized Inverse in the Theory of Finite Markov Chains , 1975 .
[28] E. Seneta. Sensitivity of finite Markov chains under perturbation , 1993 .
[29] Mehryar Mohri,et al. Stability Bounds for Non-i.i.d. Processes , 2007, NIPS.
[30] Ronitt Rubinfeld,et al. Testing that distributions are close , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[31] C. D. Meyer,et al. Comparison of perturbation bounds for the stationary distribution of a Markov chain , 2001 .
[32] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[33] F. Barthe. Learning from Dependent Observations , 2006 .
[34] Sean P. Meyn,et al. Exponential bounds and stopping rules for MCMC and general Markov chains , 2006, valuetools '06.
[35] David Gamarnik,et al. Extension of the PAC framework to finite and countable Markov chains , 1999, COLT '99.
[36] Jun S. Liu,et al. Monte Carlo strategies in scientific computing , 2001 .
[37] Elchanan Mossel,et al. The Computational Complexity of Estimating MCMC Convergence Time , 2011, APPROX-RANDOM.
[38] Massimiliano Pontil,et al. Empirical Bernstein Bounds and Sample-Variance Penalization , 2009, COLT.
[39] Aryeh Kontorovich,et al. Uniform Chernoff and Dvoretzky-Kiefer-Wolfowitz-Type Inequalities for Markov Chains and Related Processes , 2012, Journal of Applied Probability.
[40] J Besag,et al. DISCUSSION ON THE MEETING ON THE GIBBS SAMPLER AND OTHER MARKOV CHAIN-MONTE CARLO METHODS , 1993 .
[41] V. N. Bogaevski,et al. Matrix Perturbation Theory , 1991 .
[42] Ravi Montenegro,et al. Mathematical Aspects of Mixing Times in Markov Chains , 2006, Found. Trends Theor. Comput. Sci..
[43] Bin Yu. RATES OF CONVERGENCE FOR EMPIRICAL PROCESSES OF STATIONARY MIXING SEQUENCES , 1994 .
[44] M. Vidyasagar,et al. Rates of uniform convergence of empirical means with mixing processes , 2002 .
[45] Galin L. Jones,et al. Honest Exploration of Intractable Probability Distributions via Markov Chain Monte Carlo , 2001 .
[46] Thorsten Joachims,et al. Counterfactual Risk Minimization: Learning from Logged Bandit Feedback , 2015, ICML.
[47] Csaba Szepesvári,et al. Exploration-exploitation tradeoff using variance estimates in multi-armed bandits , 2009, Theor. Comput. Sci..
[48] Y. Peres,et al. Estimating the Spectral Gap of a Reversible Markov Chain from a Short Trajectory , 2016, 1612.05330.
[49] Thomas J. Walsh,et al. Knows what it knows: a framework for self-aware learning , 2008, ICML '08.