Satellite Altimetry-Based Sea Level at Global and Regional Scales

Since the beginning of the 1990s, sea level is routinely measured using high-precision satellite altimetry. Over the past ~25 years, several groups worldwide involved in processing the satellite altimetry data regularly provide updates of sea level time series at global and regional scales. Here we present an ongoing effort supported by the European Space Agency (ESA) Climate Change Initiative Programme for improving the altimetry-based sea level products. Two main objectives characterize this enterprise: (1) to make use of ESA missions (ERS-1 and 2 and Envisat) in addition to the so-called ‘reference’ missions like TOPEX/Poseidon and the Jason series in the computation of the sea level time series, and (2) to improve all processing steps in order to meet the Global Climate Observing System (GCOS) accuracy requirements defined for a set of 50 Essential Climate Variables, sea level being one of them. We show that improved geophysical corrections, dedicated processing algorithms, reduction of instrumental bias and drifts, and careful linkage between missions led to improved sea level products. Regarding the long-term trend, the new global mean sea level record accuracy now approaches the GCOS requirements (of ~0.3 mm/year). Regional trend uncertainty has been reduced by a factor of ~2, but orbital and wet tropospheric corrections errors still prevent fully reaching the GCOS accuracy requirement. Similarly at the interannual time scale, the global mean sea level still displays 2–4 mm errors that are not yet fully understood. The recent launch of new altimetry missions (Sentinel-3, Jason-3) and the inclusion of data from currently flying missions (e.g., CryoSat, SARAL/AltiKa) may provide further improvements to this important climate record.

[1]  D. E. Cartwright,et al.  Corrected Tables of Tidal Harmonics , 1973 .

[2]  R. Agreen The 3.5-year GEOS-3 data set , 1982 .

[3]  John M. Wahr,et al.  Deformation induced by polar motion , 1985 .

[4]  Andrew J. Plater,et al.  Book reviewSea-level change: Roger Revelle; Studies in Geophysics, National Research Council, National Academy Press, Washington, DC, 1990; xii + 246 pp.; USD 29.95, GBP 25.75; ISBN 0-309-04039 , 1992 .

[5]  Gary T. Mitchum,et al.  Monitoring the Stability of Satellite Altimeters with Tide Gauges , 1998 .

[6]  Gilles Reverdin,et al.  Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2 , 2000 .

[7]  John C. Ries,et al.  Chapter 1 Satellite Altimetry , 2001 .

[8]  A. Cazenave,et al.  Satellite altimetry and earth sciences : a handbook of techniques and applications , 2001 .

[9]  Fabrice Hernandez,et al.  Can We Merge GEOSAT Follow-On with TOPEX/Poseidon and ERS-2 for an Improved Description of the Ocean Circulation? , 2003 .

[10]  W. Peltier GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-AGE EARTH: The ICE-5G (VM2) Model and GRACE , 2004 .

[11]  Erwin Groten,et al.  Vertical Land Motion in the Mediterranean Sea from Altimetry and Tide Gauge Stations , 2004 .

[12]  Walter H. F. Smith,et al.  20 Years of Improvements to GEOSAT Altimetry , 2006 .

[13]  R. J. Tayler,et al.  New Computations of the Tide‐generating Potential , 2007 .

[14]  A. Cazenave,et al.  A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008 , 2009 .

[15]  M. Bouin,et al.  Rates of sea‐level change over the past century in a geocentric reference frame , 2009 .

[16]  S. Riser,et al.  The Argo Program : observing the global ocean with profiling floats , 2009 .

[17]  S. Jevrejeva,et al.  Recent global sea level acceleration started over 200 years ago? , 2008 .

[18]  Bruce J. Haines,et al.  The Harvest Experiment: Calibration of the Climate Data Record from TOPEX/Poseidon, Jason-1 and the Ocean Surface Topography Mission , 2010 .

[19]  Nicolas Picot,et al.  Overview and Update of the Sea State Bias Corrections for the Jason-2, Jason-1 and TOPEX Missions , 2010 .

[20]  R. Nerem,et al.  Modern Sea‐Level‐Change Estimates , 2010 .

[21]  Gary T. Mitchum,et al.  Estimating Mean Sea Level Change from the TOPEX and Jason Altimeter Missions , 2010 .

[22]  Gilles Larnicol,et al.  Jason-2 in DUACS: Updated System Description, First Tandem Results and Impact on Processing and Products , 2011 .

[23]  Paul Tregoning,et al.  Absolute Calibration in Bass Strait, Australia: TOPEX, Jason-1 and OSTM/Jason-2 , 2011 .

[24]  Eric Rignot,et al.  Revisiting the Earth's sea-level and energy budgets from 1961 to 2008 , 2011 .

[25]  A. Cazenave,et al.  A New Estimation of Mean Sea Level in the Arctic Ocean from Satellite Altimetry , 2011 .

[26]  R. S. Nerem,et al.  Comparison of Global Mean Sea Level Time Series from TOPEX/Poseidon, Jason-1, and Jason-2 , 2012 .

[27]  Sergei Rudenko,et al.  New improved orbit solutions for the ERS-1 and ERS-2 satellites , 2012 .

[28]  Nicolas Picot,et al.  Comparing Altimetry with Tide Gauges and Argo Profiling Floats for Data Quality Assessment and Mean Sea Level Studies , 2012 .

[29]  X. Collilieux,et al.  Mitigating the effects of vertical land motion in tide gauge records using a state-of-the-art GPS velocity field , 2012 .

[30]  J. Kusche,et al.  Water mass variation in the Mediterranean and Black Seas , 2012 .

[31]  Duncan J. Wingham,et al.  Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre , 2012 .

[32]  M. Ablain,et al.  Detection of Long-Term Instabilities on Altimeter Backscatter Coefficient Thanks to Wind Speed Data Comparisons from Altimeters and Models , 2012 .

[33]  Francois Boy,et al.  First quality assessment of the Cryosat-2 altimetric system over ocean , 2012 .

[34]  A. Cazenave,et al.  Effect of the processing methodology on satellite altimetry-based global mean sea level rise over the Jason-1 operating period , 2014, Journal of Geodesy.

[35]  John Abraham,et al.  A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change , 2013, Reviews of Geophysics.

[36]  R. Ray,et al.  Precise comparisons of bottom‐pressure and altimetric ocean tides , 2013 .

[37]  Nick Rayner,et al.  EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates , 2013 .

[38]  G. Wöppelmann,et al.  Long-term vertical land motion from double-differenced tide gauge and satellite altimetry data , 2014, Journal of Geodesy.

[39]  K. Tseng,et al.  Satellite Altimetry , 2014 .

[40]  Bruce J. Haines,et al.  Towards the 1 mm/y Stability of the Radial Orbit Error at Regional Scales , 2014 .

[41]  M. Ablain,et al.  Evaluation of wet troposphere path delays from atmospheric reanalyses and radiometers and their impact on the altimeter sea level , 2014 .

[42]  Anny Cazenave,et al.  The rate of sea-level rise , 2014 .

[43]  William Menke,et al.  Review of the Generalized Least Squares Method , 2014, Surveys in Geophysics.

[44]  Aslak Grinsted,et al.  Trends and acceleration in global and regional sea levels since 1807 , 2014 .

[45]  Sergei Rudenko,et al.  Influence of time variable geopotential models on precise orbits of altimetry satellites, global and regional mean sea level trends , 2014 .

[46]  Remko Scharroo,et al.  The German Bight: A validation of CryoSat-2 altimeter data in SAR mode , 2015 .

[47]  M. Ablain,et al.  Accuracy of the mean sea level continuous record with future altimetric missions: Jason-3 vs. Sentinel-3a , 2015 .

[48]  A. Cazenave,et al.  Total land water storage change over 2003–2013 estimated from a global mass budget approach , 2015 .

[49]  R. Kopp,et al.  Probabilistic reanalysis of twentieth-century sea-level rise , 2015, Nature.

[50]  Jonathan M. Gregory,et al.  Recent Progress in Understanding and Projecting Regional and Global Mean Sea Level Change , 2015, Current Climate Change Reports.

[51]  A. Cazenave,et al.  Sea level budget over 2005–2013: missing contributions and data errors , 2015 .

[52]  Giulio Ruffini,et al.  SAR Altimeter Backscattered Waveform Model , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[53]  Sergei Rudenko,et al.  Improved Sea Level record over the satellite altimetry era (1993-2010) from the Climate Change Initiative project , 2015 .

[54]  Clara Lázaro,et al.  Improved wet path delays for all ESA and reference altimetric missions , 2015 .

[55]  Ole Baltazar Andersen,et al.  An Improved 20-Year Arctic Ocean Altimetric Sea Level Data Record , 2015 .

[56]  Pierre Exertier,et al.  SARAL/AltiKa Absolute Calibration from the Multi-Mission Corsica Facilities , 2015 .

[57]  S. Esselborn,et al.  Improvements in precise orbit determination of altimetry satellites , 2015 .

[58]  A. Cazenave,et al.  The Sea Level Budget Since 2003: Inference on the Deep Ocean Heat Content , 2015, Surveys in Geophysics.

[59]  Matt A. King,et al.  Unabated global mean sea-level rise over the satellite altimeter era , 2015 .

[60]  M. Marcos,et al.  Vertical land motion as a key to understanding sea level change and variability , 2016 .

[61]  P. Prandi,et al.  Analyses of altimetry errors using Argo and GRACE data , 2016 .

[62]  Yannice Faugère,et al.  Major improvement of altimetry sea level estimations using pressure-derived corrections based on ERA-Interim atmospheric reanalysis , 2016 .

[63]  Yannice Faugère,et al.  DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20years , 2016 .

[64]  James Hansen,et al.  An imperative to monitor Earth's energy imbalance , 2016 .

[65]  Yannice Faugère,et al.  DUACS DT 2014 : the new multi-mission altimeter data set reprocessed over 20 years , 2016 .