Optimal parameter regions and the time-dependence of control parameter values for the particle swarm optimization algorithm

The National Research Foundation (NRF) of South Africa (Grant Number 46712) and the Natural Sciences and Engineering Research Council of Canada (NSERC).

[1]  Oscar Castillo,et al.  Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic , 2013, Expert Syst. Appl..

[2]  Andries Petrus Engelbrecht,et al.  Particle swarm convergence: An empirical investigation , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[3]  Andries Petrus Engelbrecht,et al.  Self-adaptive particle swarm optimization: a review and analysis of convergence , 2017, Swarm Intelligence.

[4]  Thomas Stützle,et al.  Heterogeneous particle swarm optimizers , 2009, 2009 IEEE Congress on Evolutionary Computation.

[5]  Andries Petrus Engelbrecht,et al.  Particle swarm optimization: Velocity initialization , 2012, 2012 IEEE Congress on Evolutionary Computation.

[6]  J. Kennedy,et al.  Population structure and particle swarm performance , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[7]  Andries Petrus Engelbrecht,et al.  Optimal parameter regions for particle swarm optimization algorithms , 2017, 2017 IEEE Congress on Evolutionary Computation (CEC).

[8]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[9]  Andries Petrus Engelbrecht,et al.  Particle swarm stability: a theoretical extension using the non-stagnate distribution assumption , 2018, Swarm Intelligence.

[10]  Zhi-hui Zhan,et al.  Topology selection for particle swarm optimization , 2016, Inf. Sci..

[11]  Andries Petrus Engelbrecht,et al.  On the optimality of particle swarm parameters in dynamic environments , 2013, 2013 IEEE Congress on Evolutionary Computation.

[12]  A. P. Engelbrecht,et al.  Particle Swarm Optimization: Global Best or Local Best? , 2013, 2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence.

[13]  Andries Petrus Engelbrecht,et al.  Inertia weight control strategies for particle swarm optimization , 2016, Swarm Intelligence.

[14]  Andries Petrus Engelbrecht,et al.  A generalized theoretical deterministic particle swarm model , 2014, Swarm Intelligence.

[15]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[16]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[17]  David Mumford,et al.  Analysis of stability , 1965 .

[18]  Andries Petrus Engelbrecht,et al.  Comparison of self-adaptive particle swarm optimizers , 2014, 2014 IEEE Symposium on Swarm Intelligence.

[19]  Oscar Castillo,et al.  Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic , 2014, Soft Computing.

[20]  Narasimhan Sundararajan,et al.  Self regulating particle swarm optimization algorithm , 2015, Inf. Sci..

[21]  Riccardo Poli,et al.  Mean and Variance of the Sampling Distribution of Particle Swarm Optimizers During Stagnation , 2009, IEEE Transactions on Evolutionary Computation.

[22]  Zbigniew Michalewicz,et al.  Impacts of Coefficients on Movement Patterns in the Particle Swarm Optimization Algorithm , 2017, IEEE Transactions on Evolutionary Computation.

[23]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[24]  Andries Petrus Engelbrecht,et al.  A self-adaptive heterogeneous pso for real-parameter optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[25]  Visakan Kadirkamanathan,et al.  Stability analysis of the particle dynamics in particle swarm optimizer , 2006, IEEE Transactions on Evolutionary Computation.

[26]  Winston Khoon Guan Seah,et al.  A performance study on synchronous and asynchronous updates in particle swarm optimization , 2011, GECCO '11.

[27]  Qunfeng Liu,et al.  Order-2 Stability Analysis of Particle Swarm Optimization , 2015, Evolutionary Computation.

[28]  Andries Petrus Engelbrecht,et al.  The sad state of self-adaptive particle swarm optimizers , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[29]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[30]  Yu Wang,et al.  Self-adaptive learning based particle swarm optimization , 2011, Inf. Sci..

[31]  Veysel Gazi,et al.  Stochastic stability analysis of the particle dynamics in the PSO algorithm , 2012, 2012 IEEE International Symposium on Intelligent Control.

[32]  Zbigniew Michalewicz,et al.  Analysis of Stability, Local Convergence, and Transformation Sensitivity of a Variant of the Particle Swarm Optimization Algorithm , 2016, IEEE Transactions on Evolutionary Computation.

[33]  Thomas Stützle,et al.  A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.

[34]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..

[35]  Shiyuan Yang,et al.  Stagnation Analysis in Particle Swarm Optimization , 2007, 2007 IEEE Swarm Intelligence Symposium.

[36]  D. Broomhead,et al.  Exact analysis of the sampling distribution for the canonical particle swarm optimiser and its convergence during stagnation , 2007, GECCO '07.

[37]  James Kennedy,et al.  Defining a Standard for Particle Swarm Optimization , 2007, 2007 IEEE Swarm Intelligence Symposium.

[38]  Zbigniew Michalewicz,et al.  Stability Analysis of the Particle Swarm Optimization Without Stagnation Assumption , 2016, IEEE Transactions on Evolutionary Computation.

[39]  Michael N. Vrahatis,et al.  Tuning PSO Parameters Through Sensitivity Analysis , 2002 .

[40]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[41]  Gang Xu,et al.  An adaptive parameter tuning of particle swarm optimization algorithm , 2013, Appl. Math. Comput..

[42]  Andries Petrus Engelbrecht,et al.  Particle swarm optimizer: The impact of unstable particles on performance , 2016, 2016 IEEE Symposium Series on Computational Intelligence (SSCI).

[43]  Changhe Li,et al.  A Self-Learning Particle Swarm Optimizer for Global Optimization Problems , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).