Fully Dynamic All-Pairs Shortest Paths: Breaking the O(n) Barrier

A fully dynamic approximate distance oracle is a distance reporting data structure that supports dynamic insert edge and delete edge operations. In this paper we break a longstanding barrier in the design of fully dynamic all-pairs approximate distance oracles. All previous results for this model incurred an amortized cost of at least Omega(n) per operation. We present the first construction that provides constant stretch and o(m) amortized update time. For graphs that are not too dense (where |E| = O(|V|^{2-delta}) for some delta>0 we break the O(n) barrier and provide the first construction with constant stretch and o(n) amortized cost.

[1]  Giuseppe F. Italiano,et al.  Fully Dynamic All Pairs Shortest Paths , 2008, Encyclopedia of Algorithms.

[2]  Ramesh Hariharan,et al.  Improved decremental algorithms for maintaining transitive closure and all-pairs shortest paths , 2002, STOC '02.

[3]  Mikkel Thorup,et al.  Fully-Dynamic All-Pairs Shortest Paths: Faster and Allowing Negative Cycles , 2004, SWAT.

[4]  Uri Zwick,et al.  On Dynamic Shortest Paths Problems , 2004, Algorithmica.

[5]  Ramesh Hariharan,et al.  Maintaining all-pairs approximate shortest paths under deletion of edges , 2003, SODA '03.

[6]  Soumojit Sarkar,et al.  Fully dynamic randomized algorithms for graph spanners , 2012, TALG.

[7]  Shiri Chechik,et al.  Approximate Distance Oracle with Constant Query Time , 2013, ArXiv.

[8]  Yefim Dinitz,et al.  Dinitz' Algorithm: The Original Version and Even's Version , 2006, Essays in Memory of Shimon Even.

[9]  Mikkel Thorup,et al.  Approximate distance oracles , 2001, JACM.

[10]  Monika Henzinger,et al.  A Subquadratic-Time Algorithm for Decremental Single-Source Shortest Paths , 2014, SODA.

[11]  Mikkel Thorup,et al.  Worst-case update times for fully-dynamic all-pairs shortest paths , 2005, STOC '05.

[12]  Giuseppe F. Italiano,et al.  Fully dynamic all pairs shortest paths with real edge weights , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[13]  Uri Zwick,et al.  Dynamic approximate all-pairs shortest paths in undirected graphs , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[14]  Aaron Bernstein,et al.  Fully Dynamic (2 + epsilon) Approximate All-Pairs Shortest Paths with Fast Query and Close to Linear Update Time , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[15]  Valerie King,et al.  Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[16]  Mikkel Thorup,et al.  Compact routing schemes , 2001, SPAA '01.

[17]  Mikkel Thorup,et al.  A Space Saving Trick for Directed Dynamic Transitive Closure and Shortest Path Algorithms , 2001, COCOON.

[18]  Monika Henzinger,et al.  Maintaining Minimum Spanning Forests in Dynamic Graphs , 2001, SIAM J. Comput..

[19]  Liam Roditty,et al.  Improved dynamic algorithms for maintaining approximate shortest paths under deletions , 2011, SODA '11.

[20]  Giuseppe F. Italiano,et al.  A new approach to dynamic all pairs shortest paths , 2004, JACM.

[21]  Giuseppe F. Italiano,et al.  Incremental algorithms for minimal length paths , 1991, SODA '90.