Atomic-scale Ab-initio study of the Zr-H system: I. Bulk properties

Bulk properties of the Zr-H system were studied in the framework of the density functional theory. The local density approximation (LDA) is found to be insufficient for a proper description of interactions between Zr and H atoms and the generalized gradient approximation (GGA) is required. In α Zr, H atoms preferentially occupy tetrahedral (T) sites at low temperatures, and can be regarded as being independent of each other up to very short distances, except for repulsive interactions between dumbbells in the same interstitial site. The Zr density of electronic states is perturbed by the presence of H, which induces the emergence of localized states. H diffusion occurs along the c axis preferentially in octahedral (O) sites, and in the basal plane by alternate jumps into T and O sites. In the γ(ZrH), δ (ZrH1.5) and e(ZrH2) hydrides, H-H interactions cannot be neglected, the nearly equal formation energies of these compounds indicate that their relative stabilities probably depend on mechanical and thermal contributions to free energies, and in fcc Zr, H atoms tend to adopt planar arrangements for compositions close to ZrH.  2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

[1]  C. Domain Simulations atomiques ab initio des effets de l'hydrogène et de l'iode dans le zirconium , 2002 .

[2]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[3]  D. Papaconstantopoulos,et al.  Self-consistent band structure calculations of titanium, zirconium and hafnium dihydrides☆ , 1984 .

[4]  Sun,et al.  Ab initio calculation of chemisorption systems: H on Pd(001) and Pd(110). , 1991, Physical review. B, Condensed matter.

[5]  G. Ackland Embrittlement and the bistable crystal structure of zirconium hydride - Ackland replies , 1998 .

[6]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[7]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[8]  A. Switendick Electronic structure of γ phase zirconium hydride , 1984 .

[9]  A. Switendick Electronic structure of group iv hydrides and their alloys , 1984 .

[10]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[11]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[12]  D. Ross,et al.  Determination of the hydrogen site occupation in the α phase of zirconium hydride and in the α and β phases of titanium hydride by inelastic neutron scattering , 1982 .

[13]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[14]  A. W. Thompson,et al.  Hydrogen effects on material behavior , 1990 .

[15]  Craft,et al.  Effects of thermal treatments on the lattice properties and electronic structure of ZrHx. , 1985, Physical review. B, Condensed matter.

[16]  Georg Kresse,et al.  Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements , 1994 .

[17]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[18]  A. Couret,et al.  A new model for the peak of activation area of α titanium , 1995 .

[19]  G. Ackland Embrittlement and the Bistable Crystal Structure of Zirconium Hydride , 1998 .

[20]  P. Norton,et al.  The study of hydrogen segregation on Zr(0001) and Zr(1010) surfaces by static secondary ion mass spectroscopy, work function, Auger electron spectroscopy and nuclear reaction analysis , 1995 .

[21]  A. Couret,et al.  An in situ study of prismatic glide in α titanium at low temperatures , 1993 .

[22]  S. Macewen,et al.  DILATION OF h.c.p. ZIRCONIUM BY INTERSTITIAL DEUTERIUM , 1985 .

[23]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[24]  E. Fisher,et al.  Single-Crystal Elastic Moduli and the hcp --> bcc Transformation in Ti, Zr, and Hf , 1964 .

[25]  A. Pasturel,et al.  Full-potential calculations using the generalized-gradient corrections : structural properties of Ti, Zr and Hf under compression , 1998 .

[26]  M. Gupta,et al.  Trends in the electron-phonon coupling parameter in some metallic hydrides , 1981 .

[27]  Farkas,et al.  Embedded-atom interatomic potentials for hydrogen in metals and intermetallic alloys. , 1996, Physical review. B, Condensed matter.

[28]  A. Pasturel,et al.  First-principles investigation of the Zr (0001) surface structure , 1999 .

[29]  F. Ducastelle,et al.  Propriétés électroniques des hydrures des systèmes Ti-H et Zr-H , 1970 .

[30]  J. J. Kearns,et al.  Diffusion coefficient of hydrogen in alpha zirconium, Zircaloy-2 and Zircaloy-4 , 1972 .

[31]  Johansson,et al.  Elastic constants of hexagonal transition metals: Theory. , 1995, Physical review. B, Condensed matter.

[32]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[33]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[34]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[35]  A. D. Corso,et al.  Structural and electronic properties of small Cun clusters using generalized-gradient approximations within density functional theory , 1998 .

[36]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[37]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[38]  A. Akhtar,et al.  Plastic deformation of zirconium single crystals , 1971 .

[39]  G. L. Paul,et al.  Location of hydrogen in α-zirconium , 1977 .

[40]  R. Car,et al.  Intermediate range order and bonding character in disordered network-forming systems , 1999 .

[41]  J. Hafner Atomic-scale computational materials science ☆ , 2000 .

[42]  M. Gillan,et al.  The energetics of hydrogen in aluminium calculated from first principles , 1992 .