Search for Gravitational Waves from High-Mass-Ratio Compact-Binary Mergers of Stellar Mass and Subsolar Mass Black Holes.

We present the first search for gravitational waves from the coalescence of stellar mass and subsolar mass black holes with masses between 20-100  M_{⊙} and 0.01-1  M_{⊙}(10-10^{3}  M_{J}), respectively. The observation of a single subsolar mass black hole would establish the existence of primordial black holes and a possible component of dark matter. We search the ∼164 day of public LIGO data from 2015-2017 when LIGO-Hanford and LIGO-Livingston were simultaneously observing. We find no significant candidate gravitational-wave signals. Using this nondetection, we place a 90% upper limit on the rate of 30-0.01  M_{⊙} and 30-0.1  M_{⊙} mergers at <1.2×10^{6} and <1.6×10^{4}  Gpc^{-3}  yr^{-1}, respectively. If we consider binary formation through direct gravitational-wave braking, this kind of merger would be exceedingly rare if only the lighter black hole were primordial in origin (<10^{-4}  Gpc^{-3}  yr^{-1}). If both black holes are primordial in origin, we constrain the contribution of 1(0.1)M_{⊙} black holes to dark matter to <0.3(3)%.

[1]  J. Yokoyama,et al.  Constraints on primordial black holes , 2020, Reports on progress in physics. Physical Society.

[2]  P. K. Panda,et al.  Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo , 2019, 1912.11716.

[3]  B. Zackay,et al.  Detecting gravitational waves with disparate detector responses: Two new binary black hole mergers , 2019, Physical Review D.

[4]  P. K. Panda,et al.  GW190814: Gravitational Waves from the Coalescence of a 23 M$_\odot$ Black Hole with a 2.6 M$_\odot$ Compact Object , 2020, 2006.12611.

[5]  V. C. Antochi,et al.  Observation of Excess Electronic Recoil Events in XENON1T , 2020, 2006.09721.

[6]  P. Pani,et al.  Primordial black holes confront LIGO/Virgo data: current situation , 2020, Journal of Cosmology and Astroparticle Physics.

[7]  A. Nitz,et al.  A Search for Gravitational Waves from Binary Mergers with a Single Observatory , 2020, The Astrophysical Journal.

[8]  P. K. Panda,et al.  GW190412: Observation of a binary-black-hole coalescence with asymmetric masses , 2020 .

[9]  R. Cotesta,et al.  Frequency-domain reduced-order model of aligned-spin effective-one-body waveforms with higher-order modes , 2020, 2003.12079.

[10]  P. Pani,et al.  The evolution of primordial black holes and their final observable spins , 2020, Journal of Cosmology and Astroparticle Physics.

[11]  Santiago de Compostela,et al.  Dynamic normalization for compact binary coalescence searches in non-stationary noise , 2020, Classical and Quantum Gravity.

[12]  A. Nitz,et al.  Extending the PyCBC search for gravitational waves from compact binary mergers to a global network , 2020, Physical Review D.

[13]  P. K. Panda,et al.  GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M⊙ , 2020 .

[14]  Q. Huang,et al.  Pulsar Timing Array Constraints on Primordial Black Holes with NANOGrav 11-Year Dataset. , 2019, Physical review letters.

[15]  Scott E. Field,et al.  Surrogate model for gravitational wave signals from comparable and large-mass-ratio black hole binaries , 2019, Physical Review D.

[16]  T. Li,et al.  Searching for primordial black holes with stochastic gravitational-wave background in the space-based detector frequency band , 2019, Physical Review D.

[17]  A. Lundgren,et al.  2-OGC: Open Gravitational-wave Catalog of Binary Mergers from Analysis of Public Advanced LIGO and Virgo Data , 2019, The Astrophysical Journal.

[18]  T. Bulik,et al.  Synthetic catalog of black holes in the Milky Way , 2019, Astronomy & Astrophysics.

[19]  Robert W. Taylor,et al.  Model comparison from LIGO-Virgo data on GW170817's binary components and consequences for the merger remnant , 2019, 1908.01012.

[20]  B. Zackay,et al.  New binary black hole mergers in the second observing run of Advanced LIGO and Advanced Virgo , 2019, Physical Review D.

[21]  Q. Huang,et al.  Distinguishing primordial black holes from astrophysical black holes by Einstein Telescope and Cosmic Explorer , 2019, Journal of Cosmology and Astroparticle Physics.

[22]  S. D. Mink,et al.  Mind the Gap: The Location of the Lower Edge of the Pair-instability Supernova Black Hole Mass Gap , 2019, The Astrophysical Journal.

[23]  Duncan A. Brown,et al.  Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO , 2019, 1907.04833.

[24]  P. K. Panda,et al.  Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO ’ s Second Observing Run , 2019 .

[25]  K. Postnov,et al.  Spins of black holes in coalescing compact binaries , 2019, Physics-Uspekhi.

[26]  V. Desjacques,et al.  The initial spin probability distribution of primordial black holes , 2019, Journal of Cosmology and Astroparticle Physics.

[27]  B. Zackay,et al.  New search pipeline for compact binary mergers: Results for binary black holes in the first observing run of Advanced LIGO , 2019, Physical Review D.

[28]  B. A. Boom,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .

[29]  Alexander H. Nitz,et al.  1-OGC: The First Open Gravitational-wave Catalog of Binary Mergers from Analysis of Public Advanced LIGO Data , 2018, The Astrophysical Journal.

[30]  V. Kalogera,et al.  Pulsational Pair-instability Supernovae in Very Close Binaries , 2018, The Astrophysical Journal.

[31]  B. A. Boom,et al.  Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. , 2018, Physical review letters.

[32]  Q. Huang,et al.  Merger Rate Distribution of Primordial Black Hole Binaries , 2018, The Astrophysical Journal.

[33]  Stephen R. Taylor,et al.  The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars , 2017, 1801.01837.

[34]  L. Lehner,et al.  Can We Distinguish Low-mass Black Holes in Neutron Star Binaries? , 2017, 1710.05891.

[35]  Betty A. Young,et al.  Results from the Super Cryogenic Dark Matter Search Experiment at Soudan. , 2017, Physical review letters.

[36]  Frank Ohme,et al.  First Higher-Multipole Model of Gravitational Waves from Spinning and Coalescing Black-Hole Binaries. , 2017, Physical review letters.

[37]  T. Li,et al.  Constraints on the Primordial Black Hole Abundance from the First Advanced LIGO Observation Run Using the Stochastic Gravitational-Wave Background. , 2016, Physical review letters.

[38]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[39]  L. S. Collaboration,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017 .

[40]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[41]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[42]  J. Prochaska,et al.  Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source , 2017, Science.

[43]  A. Nitz,et al.  Distinguishing short duration noise transients in LIGO data to improve the PyCBC search for gravitational waves from high mass binary black hole mergers , 2017, 1709.08974.

[44]  A. Nitz,et al.  Searching for the full symphony of black hole binary mergers , 2017, 1709.09181.

[45]  Jhu,et al.  Merger rate of primordial black-hole binaries , 2017, 1709.06576.

[46]  M. Xiao,et al.  Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment. , 2017, Physical review letters.

[47]  Alexander H. Nitz,et al.  Detecting Binary Compact-object Mergers with Gravitational Waves: Understanding and Improving the Sensitivity of the PyCBC Search , 2017, 1705.01513.

[48]  Shuichiro Yokoyama,et al.  Spin Distribution of Primordial Black Holes , 2017, 1704.06573.

[49]  Cody Messick,et al.  Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data , 2016, 1604.04324.

[50]  W. F. Ong,et al.  THE ELECTROMAGNETIC COUNTERPART OF THE BINARY NEUTRON STAR MERGER LIGO/VIRGO GW170817. I. DISCOVERY OF THE OPTICAL COUNTERPART USING THE DARK ENERGY CAMERA , 2017 .

[51]  S. Woosley Pulsational Pair-instability Supernovae , 2016, 1608.08939.

[52]  B. Carr,et al.  Primordial Black Holes as Dark Matter , 2016, 1607.06077.

[53]  Takahiro Tanaka,et al.  Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. , 2016, Physical review letters.

[54]  J. Garc'ia-Bellido,et al.  The clustering of massive Primordial Black Holes as Dark Matter: measuring their mass distribution with Advanced LIGO , 2016, 1603.05234.

[55]  A. Riess,et al.  Did LIGO Detect Dark Matter? , 2016, Physical review letters.

[56]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[57]  Matthew West,et al.  The PyCBC search for gravitational waves from compact binary coalescence , 2015, 1508.02357.

[58]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.

[59]  Roy Williams,et al.  The LIGO Open Science Center , 2014, 1410.4839.

[60]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[61]  C. Kochanek FAILED SUPERNOVAE EXPLAIN THE COMPACT REMNANT MASS FUNCTION , 2013, 1308.0013.

[62]  D. Holz,et al.  COMPACT REMNANT MASS FUNCTION: DEPENDENCE ON THE EXPLOSION MECHANISM AND METALLICITY , 2011, 1110.1726.

[63]  Michael Boyle,et al.  Inspiral-merger-ringdown multipolar waveforms of nonspinning black-hole binaries using the effective-one-body formalism , 2011, 1106.1021.

[64]  Yi Pan,et al.  Effective-one-body waveforms calibrated to numerical relativity simulations: coalescence of non-precessing, spinning, equal-mass black holes , 2009, 0912.3466.

[65]  S. Fairhurst,et al.  The loudest event statistic: general formulation, properties and applications , 2007, 0710.0465.

[66]  Bruce Allen χ2 time-frequency discriminator for gravitational wave detection , 2005 .

[67]  Y. Taniguchi,et al.  To appear in THE ASTROPHYSICAL JOURNAL LETTERS RUNAWAY MERGING OF BLACK HOLES: ANALYTICAL CONSTRAINT ON THE TIMESCALE , 2002 .

[68]  K. Jedamzik Primordial Black Hole Formation during the QCD Epoch , 1996, astro-ph/9605152.

[69]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[70]  J. Silk,et al.  Baryon isocurvature fluctuations at small scales and baryonic dark matter. , 1993, Physical review. D, Particles and fields.

[71]  S. Hawking,et al.  Black Holes in the Early Universe , 1974 .

[72]  Stephen W. Hawking,et al.  Gravitationally collapsed objects of very low mass , 1971 .