A filtering method for the interval eigenvalue problem

We consider the general problem of computing intervals that contain the real eigenvalues of interval matrices. Given an outer approximation (superset) of the real eigenvalue set of an interval matrix, we propose a filtering method that iteratively improves the approximation. Even though our method is based on a sufficient regularity condition, it is very efficient in practice and our experimental results suggest that it improves, in general, significantly the initial outer approximation. The proposed method works for general, as well as for symmetric interval matrices.

[1]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[2]  Milan Hladík,et al.  Bounds on Real Eigenvalues and Singular Values of Interval Matrices , 2010, SIAM J. Matrix Anal. Appl..

[3]  Lubomir V. Kolev Outer Interval Solution of the Eigenvalue Problem under General Form Parametric Dependencies , 2006, Reliab. Comput..

[4]  Lynne Billard,et al.  Principal component analysis for interval data , 2012 .

[5]  J. Rohn Bounds on Eigenvalues of Interval Matrices , 1998 .

[6]  Quan Yuan,et al.  An evolution strategy method for computing eigenvalue bounds of interval matrices , 2008, Appl. Math. Comput..

[7]  Jiri Rohn,et al.  On the range of eigenvalues of an interval matrix , 2006, Computing.

[8]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[9]  J. Rohn Interval matrices: singularity and real eigenvalues , 1993 .

[10]  Milan Hladík,et al.  Journal of Computational and Applied Mathematics an Algorithm for Addressing the Real Interval Eigenvalue Problem , 2022 .

[11]  David Daney,et al.  Bounds on eigenvalues and singular values of interval matrices , 2009 .

[12]  Eiji Oki,et al.  GLPK (GNU Linear Programming Kit) , 2012 .

[13]  Damien Chablat,et al.  An Interval Analysis Based Study for the Design and the Comparison of 3-DOF Parallel Kinematic Machines , 2007, ArXiv.

[14]  Huinan Leng,et al.  Computing bounds to real eigenvalues of real‐interval matrices , 2008 .

[15]  Ke Chen,et al.  Applied Mathematics and Computation , 2022 .

[16]  A. Deif,et al.  The Interval Eigenvalue Problem , 1991 .

[17]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[18]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[19]  Jiri Rohn,et al.  A Handbook of Results on Interval Linear Problems , 2005 .

[20]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[21]  Milan Hladík,et al.  An Algorithm for the Real Interval Eigenvalue Problem , 2008 .

[22]  A. Dimarogonas Interval analysis of vibrating systems , 1995 .

[23]  Pierre Comon Independent component analysis - a new concept? signal processing , 1994 .

[24]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[25]  Huinan Leng,et al.  Computing eigenvalue bounds of structures with uncertain-but-non-random parameters by a method based on perturbation theory , 2006 .

[26]  Peter C. Müller,et al.  An approximate method for the standard interval eigenvalue problem of real non‐symmetric interval matrices , 2001 .

[27]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[28]  Helmut Beeck,et al.  Zur Problematik der Hüllenbestimmung von Intervallgleichungssystemen , 1975, Interval Mathematics.

[29]  D. Hertz The extreme eigenvalues and stability of real symmetric interval matrices , 1992 .

[30]  I. Elishakoff,et al.  Bounds of eigenvalues for structures with an interval description of uncertain-but-non-random parameters , 1996 .

[31]  Siegfried M. Rump,et al.  Solving Algebraic Problems with High Accuracy , 1983, IMACS World Congress.

[32]  Jiri Rohn,et al.  Sufficient Conditions for Regularity and Singularity of Interval Matrices , 1999, SIAM J. Matrix Anal. Appl..