Consistent Iron Abundances Derived from Neutral and Singly Ionized Iron Lines in Ultraviolet and Optical Spectra of Six Warm Metal-poor Stars

Neutral Fe lines in metal-poor stars yield conflicting abundances depending on whether and how deviations from local thermodynamic equilibrium (LTE) are considered. We have collected new high-resolution and high signal-to-noise ultraviolet (UV) spectra of three warm dwarf stars with [Fe/H] ≈ −2.9 with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. We locate archival UV spectra for three other warm dwarfs with [Fe/H] ≈ −3.3, −2.2, and −1.6, supplemented with optical spectra for all six stars. We calculate stellar parameters using methods that are largely independent of the spectra, adopting broadband photometry, color–temperature relations, Gaia parallaxes, and assumed masses. We use the LTE line analysis code MOOG to derive Fe abundances from hundreds of Fe i and Fe ii lines with wavelengths from 2290 to 6430 Å. The [Fe/H] ratios derived separately from Fe i and Fe ii lines agree in all six stars, with [Fe ii/H]–[Fe i/H] ranging from +0.00 ± 0.07 to −0.12 ± 0.09 dex, when strong lines and Fe i lines with lower excitation potential <1.2 eV are excluded. This constrains the extent of any deviations from LTE that may occur within this parameter range. While our result confirms non-LTE calculations for some warm, metal-poor dwarfs, it may not be generalizable to more metal-poor dwarfs, where deviations from LTE are predicted to be larger. We also investigate trends of systematically lower abundances derived from Fe i lines in the Balmer continuum region (≈3100–3700 Å), and we conclude that no proposed explanation for this effect can fully account for the observations presently available.

[1]  Mauricio Solar,et al.  Astronomical data analysis software and systems , 2018, Astron. Comput..

[2]  J. Lawler,et al.  Improving the Ar i and ii branching ratio calibration method: Monte Carlo simulations of effects from photon scattering/reflecting in hollow cathodes , 2018 .

[3]  C. Kobayashi,et al.  Constraining cosmic scatter in the Galactic halo through a differential analysis of metal-poor stars , 2017, 1709.03750.

[4]  J. Lawler,et al.  Laboratory transition probabilities for studies of nucleosynthesis of Fe-group elements1 , 2017 .

[5]  L. Girardi,et al.  A NEW GENERATION OF PARSEC-COLIBRI STELLAR ISOCHRONES INCLUDING THE TP-AGB PHASE , 2017, 1701.08510.

[6]  A. Frebel,et al.  Ultra-metal-poor Stars: Spectroscopic Determination of Stellar Atmospheric Parameters Using Iron Non-LTE Line Abundances , 2016, 1612.06309.

[7]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[8]  M. Asplund,et al.  Non-LTE line formation of Fe in late-type stars – III. 3D non-LTE analysis of metal-poor stars , 2016, 1608.06390.

[9]  E. A. Den Hartog,et al.  IRON-GROUP ABUNDANCES IN THE METAL-POOR MAIN-SEQUENCE TURNOFF STAR HD 84937 , 2015, 1511.05985.

[10]  P. Bonifacio,et al.  Lithium abundance in a turnoff halo star on an extreme orbit , 2015, 1509.07809.

[11]  A. Korn,et al.  Gaia FGK benchmark stars: Effective temperatures and surface gravities , 2015, 1506.06095.

[12]  E. Paunzen A new catalogue of Stroemgren-Crawford uvbybeta photometry , 2015, 1506.04568.

[13]  H. W. Zhang,et al.  SYSTEMATIC Non-LTE STUDY OF THE −2.6 ≤ [Fe/H] ≤ 0.2 F AND G DWARFS IN THE SOLAR NEIGHBORHOOD. I. STELLAR ATMOSPHERE PARAMETERS , 2015, 1506.01621.

[14]  Astronomy,et al.  Fe i Oscillator Strengths for Transitions from High-lying Odd-parity Levels , 2017, 1710.07571.

[15]  B. Gibson,et al.  APASS LANDOLT–SLOAN BVgri PHOTOMETRY OF RAVE STARS. I. DATA, EFFECTIVE TEMPERATURES, AND REDDENINGS , 2014, The Astronomical Journal.

[16]  E. A. Den Hartog,et al.  IMPROVED V ii log(gf) VALUES, HYPERFINE STRUCTURE CONSTANTS, AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937 , 2014, 1408.4175.

[17]  H. Bond,et al.  THREE ANCIENT HALO SUBGIANTS: PRECISE PARALLAXES, COMPOSITIONS, AGES, AND IMPLICATIONS FOR GLOBULAR CLUSTERS,, , 2014, 1407.7591.

[18]  Luca Casagrande,et al.  Synthetic stellar photometry – I. General considerations and new transformations for broad-band systems , 2014, 1407.6095.

[19]  J. Lawler,et al.  Fe I oscillator strengths for the Gaia-ESO survey , 2014, 1404.5578.

[20]  D. Kelson,et al.  A SEARCH FOR STARS OF VERY LOW METAL ABUNDANCE. VI. DETAILED ABUNDANCES OF 313 METAL-POOR STARS , 2014, 1403.6853.

[21]  J. Lawler,et al.  IMPROVED Co i log(gf) VALUES AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937 , 2014, The Astrophysical journal. Supplement series.

[22]  Norbert Christlieb,et al.  NORMAL AND OUTLYING POPULATIONS OF THE MILKY WAY STELLAR HALO AT [Fe/H] <−2 , 2013, 1310.1527.

[23]  J. Lawler,et al.  IMPROVED Ti ii log(gf) VALUES AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937 , 2013, 1309.1440.

[24]  José A. Gómez Hernández,et al.  Gaia FGK benchmark stars: Metallicity , 2013, 1309.1099.

[25]  K. Nomoto,et al.  Nucleosynthesis in Stars and the Chemical Enrichment of Galaxies , 2013 .

[26]  T. Beers,et al.  CHEMICAL ANALYSIS OF THE NINTH MAGNITUDE CARBON-ENHANCED METAL-POOR STAR BD+44°493 , 2013, 1306.3614.

[27]  J. Lawler,et al.  IMPROVED log(gf) VALUES FOR LINES OF Ti i AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937 (ACCURATE TRANSITION PROBABILITIES FOR Ti i) , 2013 .

[28]  T. Beers,et al.  NEW HUBBLE SPACE TELESCOPE OBSERVATIONS OF HEAVY ELEMENTS IN FOUR METAL-POOR STARS , 2012, 1210.6387.

[29]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[30]  M. Asplund,et al.  Non-LTE line formation of Fe in late-type stars - II. 1D spectroscopic stellar parameters , 2012, 1207.2454.

[31]  Maria Bergemann,et al.  Non‐LTE line formation of Fe in late‐type stars – I. Standard stars with 1D and 〈3D〉 model atmospheres , 2012, 1207.2455.

[32]  B. Leibundgut,et al.  Silver and palladium help unveil the nature of a second r-process , 2012, 1205.4744.

[33]  Ann Merchant Boesgaard,et al.  BERYLLIUM AND ALPHA-ELEMENT ABUNDANCES IN A LARGE SAMPLE OF METAL-POOR STARS , 2011, 1110.2823.

[34]  L. KuruczRobert Including all the lines11This article is part of a Special Issue on the 10th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas. , 2011 .

[35]  L. Casagrande,et al.  New constraints on the chemical evolution of the solar neighbourhood and galactic disc(s) - improved astrophysical parameters for the Geneva-Copenhagen Survey , 2011, 1103.4651.

[36]  S. Shectman,et al.  THE ABUNDANCES OF NEUTRON-CAPTURE SPECIES IN THE VERY METAL-POOR GLOBULAR CLUSTER M15: A UNIFORM ANALYSIS OF RED GIANT BRANCH AND RED HORIZONTAL BRANCH STARS , 2011, 1103.1008.

[37]  F. Grupp,et al.  A non-LTE study of neutral and singly-ionized iron line spectra in 1D models of the Sun and selected late-type stars ? , 2011, 1101.4570.

[38]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[39]  L. Casagrande,et al.  Observational evidence for a broken Li Spite plateau and mass-dependent Li depletion , 2010, 1005.2944.

[40]  L. Casagrande,et al.  An absolutely calibrated T eff scale from the infrared flux method. Dwarfs and subgiants , 2010, 1001.3142.

[41]  M. Asplund,et al.  Chemical similarities between Galactic bulge and local thick disk red giants: O, Na, Mg, Al, Si, Ca, and Ti , 2010, 1001.2521.

[42]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[43]  J. Rich,et al.  BERYLLIUM, OXYGEN, AND IRON ABUNDANCES IN EXTREMELY METAL-DEFICIENT STARS , 2009, 0906.3296.

[44]  B. Barbuy,et al.  Both accurate and precise gf-values for Fe II lines , 2009, 0901.4451.

[45]  K. Olive,et al.  Lithium abundances of halo dwarfs based on excitation temperature. I. LTE , 2008, 0811.2506.

[46]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[47]  Darko Jevremovic,et al.  The Dartmouth Stellar Evolution Database , 2008, 0804.4473.

[48]  L. Wisotzki,et al.  New Extremely Metal-Poor Stars in the Galactic Halo , 2007, 0709.0029.

[49]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[50]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[51]  Francesca Primas,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 LITHIUM ISOTOPIC ABUNDANCES IN METAL-POOR HALO , 2005 .

[52]  T. Beers,et al.  HE 1327–2326, an Unevolved Star with [Fe/H] < –5.0. I. A Comprehensive Abundance Analysis , 2005, astro-ph/0509206.

[53]  M. Asplund,et al.  Effects of line-blocking on the non-LTE Fe I spectral line formation , 2005, astro-ph/0507375.

[54]  J. Meléndez,et al.  The Effective Temperature Scale of FGK Stars. II. Teff:Color:[Fe/H] Calibrations , 2005, astro-ph/0503110.

[55]  P. Barklem,et al.  The broadening of Fe II lines by neutral hydrogen collisions , 2005, astro-ph/0502098.

[56]  M. McCall,et al.  On Determining Extinction from Reddening , 2004 .

[57]  T. Beers,et al.  First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy , 2003, astro-ph/0311082.

[58]  R. Schnabel,et al.  Fe II lifetimes and transition probabilities , 2003, astro-ph/0309023.

[59]  C. R. James,et al.  Chemical Substructure in the Milky Way Halo: A New Population of Old Stars , 2003 .

[60]  A. Korn,et al.  Kinetic equilibrium of iron in the atmospheres of cool stars - III. The ionization equilibrium of selected reference stars , 2003, astro-ph/0306337.

[61]  Wm. A. Wheaton,et al.  2MASS All Sky Catalog of point sources. , 2003 .

[62]  S. Johansson,et al.  The FERRUM Project: Experimental oscillator strengths of the UV 8 multiplet and other UV transitions from the y6P levels of Fe II , 2002 .

[63]  Bruce W. Carney,et al.  A Survey of Proper-Motion Stars. XVI. Orbital Solutions for 171 Single-lined Spectroscopic Binaries , 2002 .

[64]  G. Piotto,et al.  Rotation of Hot Horizontal-Branch Stars in the Globular Clusters NGC 1904, NGC 2808, NGC 6093, and NGC 7078 , 2002, astro-ph/0204403.

[65]  T. Beers,et al.  Stellar Archaeology: A Keck Pilot Program on Extremely Metal-poor Stars from the Hamburg/ESO Survey. II. Abundance Analysis , 2002, astro-ph/0204083.

[66]  B. Carney,et al.  A Survey of Proper-Motion Stars. XIV. Spectroscopic Binaries among Metal-poor Field Blue Stragglers , 2001 .

[67]  S. Johansson,et al.  The FERRUM project: Branching ratios and atomic transition probabilities of Fe II transitions from the 3d 6 (a 3 F)4p subconfiguration in the visible to VUV spectral region , 2001 .

[68]  R. Rood,et al.  Modeling Mid-Ultraviolet Spectra. I. Temperatures of Metal-poor Stars , 2000, astro-ph/0009208.

[69]  Bernard Delabre,et al.  Design, construction, and performance of UVES, the echelle spectrograph for the UT2 Kueyen Telescope at the ESO Paranal Observatory , 2000, Astronomical Telescopes and Instrumentation.

[70]  J. Fulbright Abundances and Kinematics of Field Halo and Disk Stars. I. Observational Data and Abundance Analysis , 2000, astro-ph/0006260.

[71]  Michigan State University,et al.  A Search for Stars of Very Low Metal Abundance. V. Photoelectric UBV Photometry of Metal-weak Candidates from the Northern HK Survey , 2000, astro-ph/0006178.

[72]  Paul Barklem,et al.  A list of data for the broadening of metallic lines by neutral hydrogen collisions , 2000 .

[73]  Zhongshan Li,et al.  The FERRUM project: experimental lifetimes of highly excited Fe II 3d64p levels and transition probabilities , 1999 .

[74]  Santiago Arribas,et al.  The effective temperature scale of giant stars (F0–K5) - II. Empirical calibration of versus colours and [Fe/H] , 1999 .

[75]  F. Thevenin,et al.  Stellar Iron Abundances: Non-LTE Effects , 1999, astro-ph/9906433.

[76]  T. Beers,et al.  The Spite Lithium Plateau: Ultrathin but Postprimordial , 1999, astro-ph/9903059.

[77]  V. Smith,et al.  Isotopic Lithium Abundances in Nine Halo Stars , 1998 .

[78]  Lee D. Feinberg,et al.  The Space Telescope Imaging Spectrograph Design , 1998 .

[79]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[80]  Lee D. Feinberg,et al.  The On-Orbit Performance of the Space Telescope Imaging Spectrograph , 1998, Astronomical Telescopes and Instrumentation.

[81]  J. Lawler,et al.  Branching Fractions and Oscillator Strengths for Fe II Transitions from the 3d 6( 5D)4p Subconfiguration , 1996 .

[82]  Phillip J. MacQueen,et al.  THE HIGH-RESOLUTION CROSS-DISPERSED ECHELLE WHITE PUPIL SPECTROMETER OF THE MCDONALD OBSERVATORY 2.7-M TELESCOPE , 1995 .

[83]  M. Couture,et al.  HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope , 1994, Astronomical Telescopes and Instrumentation.

[84]  J. W. Brault,et al.  Lifetimes, transition probabilities, and level energies in Fe i , 1991 .

[85]  A. Vidal-Madjar,et al.  NA I as a tracer of H I in the diffuse interstellar medium. , 1985 .

[86]  B. Savage,et al.  A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .

[87]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[88]  E. A. Den Hartog,et al.  IMPROVED V i log(gf) VALUES AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937 , 2014 .

[89]  E. A. Den Hartog,et al.  Fe i OSCILLATOR STRENGTHS FOR TRANSITIONS FROM HIGH-LYING EVEN-PARITY LEVELS , 2014 .

[90]  M. I. B. Olte,et al.  Detailed Abundances for 28 Metal-poor Stars: Stellar Relics in the Milky Way , 2008 .

[91]  Jorge Ricardo Ducati,et al.  Catalogue of Stellar Photometry in Johnson's 11-color system. , 2002 .

[92]  L. Spitzer,et al.  Diffuse matter in space , 1968 .

[93]  A. B.,et al.  Physik der Sternatmosphären: , 1938, Nature.