Mimicry in viceroy butterflies is dependent on abundance of the model queen butterfly

[1]  Per B. Brockhoff,et al.  lmerTest Package: Tests in Linear Mixed Effects Models , 2017 .

[2]  R. Harrison,et al.  Does spatial variation in predation pressure modulate selection for aposematism? , 2017, Ecology and evolution.

[3]  D. Pfennig,et al.  Geographic variation in mimetic precision among different species of coral snake mimics , 2017, Journal of evolutionary biology.

[4]  Christian L. Cox,et al.  Coral snakes predict the evolution of mimicry across New World snakes , 2016, Nature Communications.

[5]  M. Arias,et al.  Warning signals are under positive frequency-dependent selection in nature , 2016, Proceedings of the National Academy of Sciences.

[6]  Roger Bivand,et al.  Bindings for the Geospatial Data Abstraction Library , 2015 .

[7]  Robert J. Hijmans,et al.  Geographic Data Analysis and Modeling , 2015 .

[8]  E. Zvereva,et al.  The costs and effectiveness of chemical defenses in herbivorous insects: a meta‐analysis , 2015 .

[9]  E. Pebesma,et al.  Classes and Methods for Spatial Data , 2015 .

[10]  D. Bates,et al.  Linear Mixed-Effects Models using 'Eigen' and S4 , 2015 .

[11]  P. Brockhoff,et al.  Tests in Linear Mixed Effects Models , 2015 .

[12]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[13]  D. Pfennig,et al.  Rapid evolution of mimicry following local model extinction , 2014, Biology Letters.

[14]  J. Mappes,et al.  Changes in predator community structure shifts the efficacy of two warning signals in Arctiid moths. , 2014, The Journal of animal ecology.

[15]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[16]  Guangqing Chi,et al.  Applied Spatial Data Analysis with R , 2015 .

[17]  J. Mappes,et al.  Why are defensive toxins so variable? An evolutionary perspective , 2012, Biological reviews of the Cambridge Philosophical Society.

[18]  J. Mappes,et al.  Variation in predator species abundance can cause variable selection pressure on warning signaling prey , 2012, Ecology and evolution.

[19]  Hannah M. Rowland,et al.  Prey community structure affects how predators select for Müllerian mimicry , 2012, Proceedings of the Royal Society B: Biological Sciences.

[20]  D. Pfennig,et al.  Mimics without models: causes and consequences of allopatry in Batesian mimicry complexes , 2010, Proceedings of the Royal Society B: Biological Sciences.

[21]  J. Endler,et al.  The Spatial Pattern of Natural Selection When Selection Depends on Experience , 2009, The American Naturalist.

[22]  S. Mullen,et al.  A Rare Model Limits the Distribution of its More Common Mimic: A Twist on Frequency-Dependent Batesian Mimicry , 2008, Evolution; international journal of organic evolution.

[23]  J. Oliver,et al.  Once a Batesian mimic, not always a Batesian mimic: mimic reverts back to ancestral phenotype when the model is absent , 2008, Proceedings of the Royal Society B: Biological Sciences.

[24]  D. Pfennig,et al.  Selection overrides gene flow to break down maladaptive mimicry , 2008, Nature.

[25]  Scott J. Werner,et al.  Food color, flavor, and conditioned avoidance among red-winged blackbirds , 2008, Physiology & Behavior.

[26]  F. Schmidt Meta-Analysis , 2008 .

[27]  K. Prudic,et al.  Isolation, Identification, and Quantification of Potential Defensive Compounds in the Viceroy Butterfly and its Larval Host–Plant, Carolina Willow , 2007, Journal of Chemical Ecology.

[28]  D. Papaj,et al.  Aposematic coloration, luminance contrast, and the benefits of conspicuousness , 2007 .

[29]  William R. Harcombe,et al.  Population differences in predation on Batesian mimics in allopatry with their model: selection against mimics is strongest when they are common , 2007, Behavioral Ecology and Sociobiology.

[30]  S. Mullen Wing pattern evolution and the origins of mimicry among North American admiral butterflies (Nymphalidae: Limenitis). , 2006, Molecular phylogenetics and evolution.

[31]  C. Rowe,et al.  Prey palatability influences predator learning and memory , 2006, Animal Behaviour.

[32]  C. Rowe,et al.  Colour biases are a question of taste , 2005, Animal Behaviour.

[33]  M. Hilker,et al.  Composition of larval secretion ofChrysomela lapponica (Coleoptera, Chrysomelidae) and its dependence on host plant , 1994, Journal of Chemical Ecology.

[34]  Edzer J. Pebesma,et al.  Multivariable geostatistics in S: the gstat package , 2004, Comput. Geosci..

[35]  L. Brower,et al.  Geographic and Temporal Variation of Cardenolide-Based Chemical Defenses of Queen Butterfly (Danaus gilippus) in Northern Florida , 1998, Journal of Chemical Ecology.

[36]  David B. Ritland,et al.  Comparative unpalatability of mimetic viceroy butterflies (Limenitis archippus) from four south-eastern United States populations , 1995, Oecologia.

[37]  D. B. Ritland Palatability of aposematic queen butterflies (Danaus gilippus) feeding onSarcostemma clausum (Asclepiadaceae) in Florida , 1991, Journal of Chemical Ecology.

[38]  R. Julkunen‐Tiitto,et al.  Phenolic glycosides govern the food selection pattern of willow feeding leaf beetles , 1985, Oecologia.

[39]  G. Ruxton,et al.  Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry , 2004 .

[40]  N. Clayton,et al.  Evaluating a putative mimetic relationship between two butterflies, Adelpha bredowii and Limenitis lorquini , 2002 .

[41]  William R. Harcombe,et al.  Frequency-dependent Batesian mimicry , 2001, Nature.

[42]  James Mallet,et al.  EVOLUTION OF DIVERSITY IN WARNING COLOR AND MIMICRY: Polymorphisms, Shifting , 1999 .

[43]  J. Turner,et al.  Learning and memory in mimicry: II. Do we understand the mimicry spectrum? , 1999 .

[44]  D. Daloze,et al.  Host plant influence on the composition of the defensive secretion of Chrysomela vigintipunctata larvae (Coleoptera: Chrysomelidae) , 1998 .

[45]  J. Mappes,et al.  Imperfect Batesian mimicry—the effects of the frequency and the distastefulness of the model , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[46]  D. B. Ritland Variation in Palatability of Queen Butterflies (Danaus Gilippus) and Implications Regarding Mimicry , 1994 .

[47]  L. Brower,et al.  The viceroy butterfly is not a batesian mimic , 1991, Nature.

[48]  J. Turner,et al.  Mimicry and the Monte Carlo predator: the palatability spectrum, and the origins of mimicry , 1984 .

[49]  R. Coppinger,et al.  DEMONSTRATION OF THE SELECTIVE ADVANTAGE OF MIMETIC LIMENITIS BUTTERFLIES PRESENTED TO CAGED AVIAN PREDATORS , 1971, Evolution; international journal of organic evolution.

[50]  L. Coppinger,et al.  Ecological Chemistry and the Palatability Spectrum , 1968, Science.

[51]  J. V. Z. Brower EXPERIMENTAL STUDIES OF MIMICRY IN SOME NORTH AMERICAN BUTTERFLIES. PART III. ***DANAUS GILIPPUS BERENICE AND LIMENITIS ARCHIPPUS FLORIDENSIS , 1958 .