ORIGIN OF MULTIPLE NUCLEI IN ULTRALUMINOUS INFRARED GALAXIES

Ultraluminous infrared galaxies (ULIRGs) with multiple (⩾3) nuclei are frequently observed. It has been suggested that these nuclei are produced by multiple major mergers of galaxies. The expected rate of such mergers is, however, too low to reproduce the observed number of ULIRGs with multiple nuclei. We have performed high-resolution simulations of the merging of two gas-rich disk galaxies. We found that extremely massive and compact star clusters form from the strongly disturbed gas disks after the first or second encounter between the galaxies. The mass of such clusters reaches ∼108 M☉ and their half-mass radii are 20–30 pc. Since these clusters consist of young stars, they appear as several bright cores in the galactic central region (∼kpc). The peak luminosity of these clusters reaches ∼10% of the total luminosity of the merging galaxy. These massive and compact clusters are consistent with the characteristics of the observed multiple nuclei in ULIRGs. Multiple mergers are not necessary to explain multiple nuclei in ULIRGs.

[1]  R. Klein,et al.  RADIATION-HYDRODYNAMIC SIMULATIONS OF THE FORMATION OF ORION-LIKE STAR CLUSTERS. I. IMPLICATIONS FOR THE ORIGIN OF THE INITIAL MASS FUNCTION , 2011, 1104.2038.

[2]  T. Saitoh,et al.  INTERPLAY BETWEEN STELLAR SPIRALS AND THE INTERSTELLAR MEDIUM IN GALACTIC DISKS , 2011, 1104.1287.

[3]  A. Evans,et al.  THE NUCLEAR STRUCTURE IN NEARBY LUMINOUS INFRARED GALAXIES: HUBBLE SPACE TELESCOPE NICMOS IMAGING OF THE GOALS SAMPLE , 2010, 1012.4012.

[4]  Romain Teyssier,et al.  HYDRODYNAMICS OF HIGH-REDSHIFT GALAXY COLLISIONS: FROM GAS-RICH DISKS TO DISPERSION-DOMINATED MERGERS AND COMPACT SPHEROIDS , 2010, 1006.4782.

[5]  R. Teyssier,et al.  THE DRIVING MECHANISM OF STARBURSTS IN GALAXY MERGERS , 2010, 1006.4757.

[6]  H Germany,et al.  VLT-VIMOS integral field spectroscopy of luminous and ultraluminous infrared galaxies - II. Evidence for shock ionization caused by tidal forces in the extra-nuclear regions of interacting and merging LIRGs , 2010, 1004.3933.

[7]  A. Dekel,et al.  Survival of star-forming giant clumps in high-redshift galaxies , 2010, 1001.0765.

[8]  C. Tadhunter,et al.  The properties of the stellar populations in ULIRGs – II. Star formation histories and evolution , 2009, 0911.4052.

[9]  J. Makino,et al.  FAST: A Fully Asynchronous Split Time-Integrator for a Self-Gravitating Fluid , 2009, 0908.1460.

[10]  B. Weiner,et al.  EVOLUTION OF THE STELLAR MASS TULLY–FISHER RELATION IN DISK GALAXY MERGER SIMULATIONS , 2009, 0902.0566.

[11]  H Germany,et al.  PMAS optical integral field spectroscopy of luminous infrared galaxies - II. Spatially resolved stellar populations and excitation conditions, , 2010, 1006.2219.

[12]  Luis Colina,et al.  PMAS optical integral field spectroscopy of luminous infrared galaxies - I. The atlas , 2009, 0907.5105.

[13]  L. Colina,et al.  Integral field optical spectroscopy of a representative sample of ULIRGs - I. The data , 2009, 0907.2408.

[14]  L. Colina,et al.  Integral field optical spectroscopy of a representative sample of ULIRGs - II. Two-dimensional kpc-scale extinction structure , 2009, 0907.2218.

[15]  Lars Hernquist,et al.  The star-forming molecular gas in high-redshift Submillimetre Galaxies , 2009, 0905.2184.

[16]  T. Abel,et al.  GALAXY MERGERS WITH ADAPTIVE MESH REFINEMENT: STAR FORMATION AND HOT GAS OUTFLOW , 2009, 0902.3001.

[17]  Tomonori Totani,et al.  Lyα EMITTERS IN HIERARCHICAL GALAXY FORMATION. II. ULTRAVIOLET CONTINUUM LUMINOSITY FUNCTION AND EQUIVALENT WIDTH DISTRIBUTION , 2009, 0902.2882.

[18]  Ralf Bender,et al.  STRUCTURE AND FORMATION OF ELLIPTICAL AND SPHEROIDAL GALAXIES , 2008, 0810.1681.

[19]  J. Makino,et al.  A NECESSARY CONDITION FOR INDIVIDUAL TIME STEPS IN SPH SIMULATIONS , 2008, 0808.0773.

[20]  J. Makino,et al.  Toward First-Principle Simulations of Galaxy Formation : II. Shock-Induced Starburst at a Collision Interface during the First Encounter of Interacting Galaxies , 2008, 0805.0167.

[21]  E. Emsellem,et al.  High-resolution simulations of galaxy mergers: resolving globular cluster formation , 2008, 0806.1386.

[22]  W. Vacca,et al.  Young star clusters in interacting galaxies - NGC 1487 and NGC 4038/4039 , 2008, 0805.2559.

[23]  R. Maiolino,et al.  Spectral decomposition of starbursts and active galactic nuclei in 5-8 μm Spitzer-IRS spectra of local ultraluminous infrared galaxies , 2008 .

[24]  J. Makino,et al.  Toward First-Principle Simulations of Galaxy Formation: I. How Should We Choose Star-Formation Criteria in High-Resolution Simulations of Disk Galaxies? , 2008, 0802.0961.

[25]  B. G. Elmegreen,et al.  Rapid Formation of Exponential Disks and Bulges at High Redshift from the Dynamical Evolution of Clump-Cluster and Chain Galaxies , 2007, 0708.0306.

[26]  B. Brandl,et al.  High-Resolution Mid-Infrared Spectroscopy of Ultraluminous Infrared Galaxies , 2007, 0706.0513.

[27]  Star formation efficiency in galaxy interactions and mergers: a statistical study , 2007, astro-ph/0703212.

[28]  T. Ebisuzaki,et al.  Orbital Evolution of an IMBH in the Galactic Nucleus with a Massive Central Black Hole , 2007 .

[29]  P. Hopkins,et al.  The Kinematic Structure of Merger Remnants , 2006, astro-ph/0607446.

[30]  G. Rieke,et al.  Dynamical Masses in Luminous Infrared Galaxies , 2006, astro-ph/0604286.

[31]  Tidal Disruption of Dark Matter Halos around Proto-Globular Clusters , 2005, astro-ph/0511692.

[32]  R. Maiolino,et al.  Unveiling the nature of Ultraluminous Infrared Galaxies with 3–4 μm spectroscopy , 2005, astro-ph/0510282.

[33]  L. Colina,et al.  Kinematics of Low-z Ultraluminous Infrared Galaxies and Implications for Dynamical Mass Derivations in High-z Star-forming Galaxies , 2005 .

[34]  V. Debattista,et al.  The Fate of Supermassive Black Holes and the Evolution of the MBH-σ Relation in Merging Galaxies: The Effect of Gaseous Dissipation , 2004, astro-ph/0407407.

[35]  R. Klessen,et al.  Formation of Globular Clusters in Galaxy Mergers , 2004, astro-ph/0407248.

[36]  P. Hut,et al.  Formation of massive black holes through runaway collisions in dense young star clusters , 2004, Nature.

[37]  Gas physics, disk fragmentation, and bulge formation in young galaxies , 2003, astro-ph/0312139.

[38]  J. Surace,et al.  The IRAS Revised Bright Galaxy Sample , 2003, astro-ph/0306263.

[39]  B. Draine Scattering by Interstellar Dust Grains. I. Optical and Ultraviolet , 2003, astro-ph/0304060.

[40]  S. Veilleux,et al.  Optical and Near-Infrared Imaging of the IRAS 1 Jy Sample of Ultraluminous Infrared Galaxies. II. The Analysis , 2002, astro-ph/0207373.

[41]  L. Colina,et al.  Ultraluminous Infrared Galaxies: Atlas of Near-Infrared Images , 2001, astro-ph/0108261.

[42]  Toshikazu Ebisuzaki,et al.  UvA-DARE ( Digital Academic Repository ) Missing Link Found ? The " Runaway " Path to Supermassive Black Holes , 2001 .

[43]  Z. Deng,et al.  Statistical Properties of Ultraluminous IRAS Galaxies from an HST Imaging Survey , 2001, astro-ph/0104296.

[44]  K. Bekki Starbursts in Multiple Galaxy Mergers , 2000, astro-ph/0012363.

[45]  Y. Shioya,et al.  Formation and Evolution of Dusty Starburst Galaxies. I. A New Method for Deriving a Spectral Energy Distribution , 2000, astro-ph/0004391.

[46]  Early Evolution of Disk Galaxies: Formation of Bulges in Clumpy Young Galactic Disks , 1998, astro-ph/9806355.

[47]  Joseph M. Mazzarella,et al.  HST/WFPC2 Observations of Warm Ultraluminous Infrared Galaxies , 1998 .

[48]  J. Makino,et al.  Evolution of compact groups of galaxies — I. Merging rates , 1996, astro-ph/9612223.

[49]  L. Hernquist,et al.  Transformations of Galaxies. II. Gasdynamics in Merging Disk Galaxies: Addendum , 1996 .

[50]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[51]  L. Hernquist,et al.  Gasdynamics and starbursts in major mergers , 1995, astro-ph/9512099.

[52]  B. Whitmore,et al.  Hubble space telescope observations of young star clusters in NGC-4038/4039, 'the antennae' galaxies , 1995 .

[53]  A. Ribeiro,et al.  The Faint End of the Luminosity Function of Galaxies in Compact Groups , 1994, astro-ph/9707341.

[54]  L. Hernquist Structure of merger remnants. II: Progenitors with rotating bulges , 1993 .

[55]  L. Hernquist,et al.  Formation of dwarf galaxies in tidal tails , 1992, Nature.

[56]  L. Hernquist Structure of merger remnants. I - Bulgeless progenitors , 1992 .

[57]  J. Barnes Transformations of galaxies. I: Mergers of equal-mass stellar disks , 1992 .

[58]  P. Hickson,et al.  The luminosity function of compact groups of galaxies , 1991 .

[59]  D. Richstone,et al.  Models of star formation in interacting and merging disk galaxies. , 1991 .

[60]  Toshikazu Ebisuzaki,et al.  A special-purpose computer for gravitational many-body problems , 1990, Nature.

[61]  E. Salpeter The Luminosity function and stellar evolution , 1955 .