Union support recovery in high-dimensional multivariate regression
暂无分享,去创建一个
[1] N. Meinshausen,et al. High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.
[2] Xiaoming Huo,et al. Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.
[3] Wenjiang J. Fu,et al. Asymptotics for lasso-type estimators , 2000 .
[4] G. Obozinski. Joint covariate selection for grouped classification , 2007 .
[5] Hao Helen Zhang,et al. Variable selection for the multicategory SVM via adaptive sup-norm regularization , 2008, 0803.3676.
[6] Martin J. Wainwright,et al. Sharp thresholds for high-dimensional and noisy recovery of sparsity , 2006, ArXiv.
[7] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[8] Joel A. Tropp,et al. Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.
[9] R. Tibshirani,et al. Least angle regression , 2004, math/0406456.
[10] Han Liu,et al. On the ℓ 1 -ℓ q Regularized Regression , 2008 .
[11] M. R. Osborne,et al. A new approach to variable selection in least squares problems , 2000 .
[12] Stephen J. Wright,et al. Simultaneous Variable Selection , 2005, Technometrics.
[13] Massimiliano Pontil,et al. Multi-Task Feature Learning , 2006, NIPS.
[14] V. Buldygin,et al. Metric characterization of random variables and random processes , 2000 .
[15] T. W. Anderson. An Introduction to Multivariate Statistical Analysis , 1959 .
[16] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[17] Terence Tao,et al. The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.
[18] N. Meinshausen,et al. LASSO-TYPE RECOVERY OF SPARSE REPRESENTATIONS FOR HIGH-DIMENSIONAL DATA , 2008, 0806.0145.
[19] P. Massart,et al. Adaptive estimation of a quadratic functional by model selection , 2000 .
[20] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[21] S. Szarek,et al. Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .
[22] Larry A. Wasserman,et al. SpAM: Sparse Additive Models , 2007, NIPS.
[23] Peng Zhao,et al. On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..
[24] M. Yuan,et al. Model selection and estimation in regression with grouped variables , 2006 .
[25] Francis R. Bach,et al. Consistency of the group Lasso and multiple kernel learning , 2007, J. Mach. Learn. Res..
[26] Michael I. Jordan,et al. Multiple kernel learning, conic duality, and the SMO algorithm , 2004, ICML.
[27] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[28] P. Zhao,et al. Grouped and Hierarchical Model Selection through Composite Absolute Penalties , 2007 .
[29] P. Bühlmann,et al. The group lasso for logistic regression , 2008 .