Secure Identification Under Passive Eavesdroppers and Active Jamming Attacks

In next-generation connectivity systems, which rely on robust and low-latency information exchange, there exists communication tasks in which the Ahlswede/Dueck identification scheme is much more efficient than Shannon’s transmission scheme. We concentrate on the arbitrarily varying wiretap channel (AVWC) that models jamming attacks. We provide a coding scheme for secure identification and determine the secrecy capacity of the AVWC. Furthermore, we analyze important properties of this capacity function, e.g., continuity and super-additivity. These properties are important for the design of robust secure communication design and for the optimization of the medium access control.

[1]  Moritz Wiese,et al.  The Arbitrarily Varying Wiretap Channel - Secret Randomness, Stability, and Super-Activation , 2016, IEEE Trans. Inf. Theory.

[2]  Willem H. Haemers,et al.  On Some Problems of Lovász Concerning the Shannon Capacity of a Graph , 1979, IEEE Trans. Inf. Theory.

[3]  Holger Boche,et al.  Secure identification under jamming attacks , 2017, 2017 IEEE Workshop on Information Forensics and Security (WIFS).

[4]  Rudolf Ahlswede,et al.  New directions in the theory of identification via channels , 1995, IEEE Trans. Inf. Theory.

[5]  Rudolf Ahlswede,et al.  Identification via channels , 1989, IEEE Trans. Inf. Theory.

[6]  Fr'ed'eric Dupuis,et al.  Locking classical information , 2010 .

[7]  Rudolf Ahlswede,et al.  Identification in the presence of feedback-A discovery of new capacity formulas , 1989, IEEE Trans. Inf. Theory.

[8]  H. Vincent Poor,et al.  On the Continuity of the Secrecy Capacity of Compound and Arbitrarily Varying Wiretap Channels , 2014, IEEE Transactions on Information Forensics and Security.

[9]  R. Ahlswede Elimination of correlation in random codes for arbitrarily varying channels , 1978 .

[10]  J. Wolfowitz Simultaneous channels , 1959 .

[11]  Rudolf Ahlswede,et al.  Transmission, Identification and Common Randomness Capacities for Wire-Tape Channels with Secure Feedback from the Decoder , 2005, GTIT-C.

[12]  Moritz Wiese,et al.  A Channel Under Simultaneous Jamming and Eavesdropping Attack—Correlated Random Coding Capacities Under Strong Secrecy Criteria , 2014, IEEE Transactions on Information Theory.

[13]  Holger Boche,et al.  Secure Identification for Wiretap Channels; Robustness, Super-Additivity and Continuity , 2018, IEEE Transactions on Information Forensics and Security.

[14]  Sergio Verdú,et al.  New results in the theory of identification via channels , 1992, IEEE Trans. Inf. Theory.

[15]  Holger Boche,et al.  Secrecy results for compound wiretap channels , 2011, Probl. Inf. Transm..

[16]  Rudolf Ahlswede,et al.  Probabilistic Methods and Distributed Information , 2018, Foundations in Signal Processing, Communications and Networking.

[17]  Sergio Verdú,et al.  Approximation theory of output statistics , 1993, IEEE Trans. Inf. Theory.

[18]  Samuel Karlin,et al.  Mathematical Methods and Theory in Games, Programming, and Economics , 1961 .

[19]  Rudolf Ahlswede,et al.  General theory of information transfer: Updated , 2008, Discret. Appl. Math..

[20]  Rudolf Ahlswede On Concepts of Performance Parameters for Channels , 2006, GTIT-C.

[21]  Imre Csiszár,et al.  The capacity of the arbitrarily varying channel revisited: Positivity, constraints , 1988, IEEE Trans. Inf. Theory.

[22]  R. Ahlswede A Note on the Existence of the Weak Capacity for Channels with Arbitrarily Varying Channel Probability Functions and Its Relation to Shannon's Zero Error Capacity , 1970 .

[23]  Peter Keevash,et al.  On the Normalized Shannon Capacity of a Union , 2016, Combinatorics, Probability and Computing.

[24]  Holger Boche,et al.  Capacity Results for Arbitrarily Varying Wiretap Channels , 2012, Information Theory, Combinatorics, and Search Theory.

[25]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[26]  Rudolf Ahlswede,et al.  Watermarking Identification Codes with Related Topics on Common Randomness , 2005, Electron. Notes Discret. Math..

[27]  Rudolf Ahlswede,et al.  General theory of information transfer , 2005, Electron. Notes Discret. Math..

[28]  Shlomo Shamai,et al.  Compound Wiretap Channels , 2009, EURASIP J. Wirel. Commun. Netw..

[29]  H. Vincent Poor,et al.  Characterization of super-additivity and discontinuity behavior of the capacity of arbitrarily varying channels under list decoding , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[30]  H. Vincent Poor,et al.  Super-activation as a unique feature of arbitrarily varying wiretap channels , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[31]  Hirosuke Yamamoto,et al.  Secure Multiplex Coding Attaining Channel Capacity in Wiretap Channels , 2013, IEEE Transactions on Information Theory.

[32]  Thomas H. E. Ericson,et al.  Exponential error bounds for random codes in the arbitrarily varying channel , 1985, IEEE Trans. Inf. Theory.

[33]  Rudolf Ahlswede,et al.  Common Randomness in Information Theory and Cryptography - Part II: CR Capacity , 1998, IEEE Trans. Inf. Theory.

[34]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[35]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[36]  D. Blackwell,et al.  The Capacities of Certain Channel Classes Under Random Coding , 1960 .

[37]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[38]  Noga Alon,et al.  The Shannon Capacity of a Union , 1998, Comb..

[39]  D. Blackwell,et al.  The Capacity of a Class of Channels , 1959 .

[40]  V. Balakirsky,et al.  Identification under random processes , 1996 .

[41]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .