Instant Selection of High Contrast Projections in Multi-Dimensional Data Streams
暂无分享,去创建一个
[1] Yi Zhang,et al. Entropy-based subspace clustering for mining numerical data , 1999, KDD '99.
[2] Pedro Furtado,et al. Vmhist: Efficient Multidimensional Histograms with Improved Accuracy , 2000, DaWaK.
[3] Hans-Peter Kriegel,et al. LOF: identifying density-based local outliers , 2000, SIGMOD '00.
[4] Philip S. Yu,et al. Outlier detection for high dimensional data , 2001, SIGMOD '01.
[5] Sudipto Guha,et al. Dynamic multidimensional histograms , 2002, SIGMOD '02.
[6] Hans-Peter Kriegel,et al. Ranking Interesting Subspaces for Clustering High Dimensional Data , 2003, PKDD.
[7] S. Muthukrishnan,et al. Maintenance of Multidimensional Histograms , 2003, FSTTCS.
[8] Philip S. Yu,et al. A Framework for Clustering Evolving Data Streams , 2003, VLDB.
[9] Graham J. Williams,et al. On-Line Unsupervised Outlier Detection Using Finite Mixtures with Discounting Learning Algorithms , 2000, KDD '00.
[10] Charu C. Aggarwal,et al. On Abnormality Detection in Spuriously Populated Data Streams , 2005, SDM.
[11] Dimitrios Gunopulos,et al. Online outlier detection in sensor data using non-parametric models , 2006, VLDB.
[12] Fabrizio Angiulli,et al. Detecting distance-based outliers in streams of data , 2007, CIKM '07.
[13] Hans-Peter Kriegel,et al. Outlier Detection in Axis-Parallel Subspaces of High Dimensional Data , 2009, PAKDD.
[14] Heng Tao Shen,et al. Principal Component Analysis , 2009, Encyclopedia of Biometrics.
[15] Emmanuel Müller,et al. Statistical selection of relevant subspace projections for outlier ranking , 2011, 2011 IEEE 27th International Conference on Data Engineering.
[16] Myoung-Ho Kim,et al. Efficient construction of histograms for multidimensional data using quad-trees , 2011, Decis. Support Syst..
[17] Ira Assent,et al. AnyOut: Anytime Outlier Detection on Streaming Data , 2012, DASFAA.
[18] Klemens Böhm,et al. HiCS: High Contrast Subspaces for Density-Based Outlier Ranking , 2012, 2012 IEEE 28th International Conference on Data Engineering.