Laser refrigeration, alignment and rotation of levitated Yb3+:YLF nanocrystals

The ability to cool and manipulate levitated nanoparticles in vacuum is a promising tool for exploring macroscopic quantum mechanics1,2, precision measurements of forces3 and non-equilibrium thermodynamics4,5. The extreme isolation afforded by optical levitation offers a low-noise, undamped environment that has been used to measure zeptonewton forces3 and radiation pressure shot noise6, and to demonstrate centre-of-mass motion cooling7,8. Ground-state cooling and the creation of macroscopic quantum superpositions are now within reach, but control of both the centre of mass and internal temperature is required. While cooling the centre-of-mass motion to micro-kelvin temperatures has now been achieved, the internal temperature has remained at or above room temperature. Here, we realize a nanocryostat by refrigerating levitated Yb3+:YLF nanocrystals to 130 K using anti-Stokes fluorescence cooling, while simultaneously using the optical trapping field to align the crystal to maximize cooling.A nanocryostat is realized through the refrigeration of levitated Yb3+:YLF nanocrystals to 130 K using anti-Stokes fluorescence cooling, while the laser polarization allows orientation control of the trapped nanocrystal and maximizes its cooling.

[1]  M. Sheik-Bahae,et al.  Optical Refrigeration in Solids: Fundamentals and Overview , 2009 .

[2]  Christoph Dellago,et al.  Direct Measurement of Photon Recoil from a Levitated Nanoparticle. , 2016, Physical review letters.

[3]  Mark G. Raizen,et al.  Millikelvin cooling of an optically trapped microsphere in vacuum , 2011, 1101.1283.

[4]  Lukas Novotny,et al.  Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. , 2012, Physical review letters.

[5]  Kishan Dholakia,et al.  Supplementary Figure S1: Numerical Psd Simulation. Example Numerical Simulation of The , 2022 .

[6]  S. Wade,et al.  Self-referenced point temperature sensor based on a fluorescence intensity ratio in Yb(3+)-doped silica fiber. , 1997, Applied optics.

[7]  J. Anders,et al.  Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. , 2013, Nature nanotechnology.

[8]  Christoph Dellago,et al.  Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. , 2014, Nature nanotechnology.

[9]  A. Geraci,et al.  Zeptonewton force sensing with nanospheres in an optical lattice , 2016, 1603.02122.

[10]  H. Metcalf,et al.  Laser Cooling and Trapping of Neutral Atoms , 2004 .

[11]  T. R. Gosnell,et al.  Laser cooling of a solid by 65K starting from room temperature. , 1997, Optics letters.

[12]  T. R. Gosnell,et al.  Observation of laser-induced fluorescent cooling of a solid , 1995, Nature.

[13]  Gavin W. Morley,et al.  Free Nano-Object Ramsey Interferometry for Large Quantum Superpositions. , 2015, Physical review letters.

[14]  Jonghoon Ahn,et al.  Torsional Optomechanics of a Levitated Nonspherical Nanoparticle. , 2016, Physical review letters.

[15]  Mansoor Sheik-Bahae,et al.  Precise determination of minimum achievable temperature for solid-state optical refrigeration , 2013 .

[16]  R. A. Beth Mechanical Detection and Measurement of the Angular Momentum of Light , 1936 .

[17]  Kenneth T. V. Grattan,et al.  Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation , 1998 .

[18]  Eva von Haartman,et al.  Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond , 2015, Nature Photonics.

[19]  Peter J. Pauzauskie,et al.  Laser refrigeration of hydrothermal nanocrystals in physiological media , 2015, Proceedings of the National Academy of Sciences.

[20]  Taiju Tsuboi,et al.  Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method , 2006 .

[21]  Mansoor Sheik-Bahae,et al.  Measurement of solid-state optical refrigeration by two-band differential luminescence thermometry , 2010 .

[22]  S. Blundell,et al.  Concepts in Thermal Physics , 2006 .

[23]  Bennett E. Smith,et al.  Laser Refrigeration of Ytterbium‐Doped Sodium–Yttrium–Fluoride Nanowires , 2016, Advanced materials.

[24]  Fengshan Liu,et al.  Heat conduction from a spherical nano-particle: status of modeling heat conduction in laser-induced incandescence , 2006 .

[25]  Halina Rubinsztein-Dunlop,et al.  Orientation of optically trapped nonspherical birefringent particles. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Mansoor Sheik-Bahae,et al.  Laser cooling of solids to cryogenic temperatures , 2010 .

[27]  Alexander R. Albrecht,et al.  Solid-state optical refrigeration to sub-100 Kelvin regime , 2016, Scientific Reports.

[28]  P. Pringsheim Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung , 1929 .

[29]  F. Cichos,et al.  Hot brownian motion. , 2010, Physical review letters.

[30]  Zhang-qi Yin,et al.  Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling , 2013, 1305.1701.

[31]  Alan D. Raisanen,et al.  Stable optical lift , 2010 .

[32]  A. Politi,et al.  Cooling and Trapping , 2005 .

[33]  Georges Boulon,et al.  Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality , 2004 .