Keep It Flexible: Driving Macromolecular Rotary Motions in Atomistic Simulations with GROMACS

We describe a versatile method to enforce the rotation of subsets of atoms, e.g., a protein subunit, in molecular dynamics (MD) simulations. In particular, we introduce a “flexible axis” technique that allows realistic flexible adaptions of both the rotary subunit as well as the local rotation axis during the simulation. A variety of useful rotation potentials were implemented for the GROMACS 4.5 MD package. Application to the molecular motor F1-ATP synthase demonstrates the advantages of the flexible axis approach over the established fixed axis rotation technique.

[1]  Kazuhiko Kinosita,et al.  F1-ATPase Is a Highly Efficient Molecular Motor that Rotates with Discrete 120° Steps , 1998, Cell.

[2]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[3]  Martin Karplus,et al.  How subunit coupling produces the γ-subunit rotary motion in F1-ATPase , 2008, Proceedings of the National Academy of Sciences.

[4]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[5]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[6]  P. Tavan,et al.  Ligand Binding: Molecular Mechanics Calculation of the Streptavidin-Biotin Rupture Force , 1996, Science.

[7]  K. Schulten,et al.  On the mechanism of ATP hydrolysis in F1-ATPase. , 2003, Biophysical journal.

[8]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[9]  Carlos Bustamante,et al.  Supplemental data for : The Bacteriophage ø 29 Portal Motor can Package DNA Against a Large Internal Force , 2001 .

[10]  Wei Yang,et al.  A Structure-Based Model for the Synthesis and Hydrolysis of ATP by F1-ATPase , 2005, Cell.

[11]  Marc C. Morais,et al.  Structure of the bacteriophage φ29 DNA packaging motor , 2000, Nature.

[12]  George Oster,et al.  Energy transduction in the F1 motor of ATP synthase , 1998, Nature.

[13]  G Vriend,et al.  WHAT IF: a molecular modeling and drug design program. , 1990, Journal of molecular graphics.

[14]  Klaus Schulten,et al.  Steered Molecular Dynamics , 1999, Computational Molecular Dynamics.

[15]  H. Grubmüller,et al.  Conformational Dynamics of the F1-ATPase β-Subunit: A Molecular Dynamics Study , 2003 .

[16]  Klaus Schulten,et al.  Molecular dynamics investigation of primary photoinduced events in the activation of rhodopsin. , 2002, Biophysical journal.

[17]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[18]  Ilya A. Balabin,et al.  Insights into the molecular mechanism of rotation in the Fo sector of ATP synthase. , 2004, Biophysical journal.

[19]  Wei Yang,et al.  A model for the cooperative free energy transduction and kinetics of ATP hydrolysis by F1-ATPase , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[20]  R. Friesner,et al.  Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides† , 2001 .

[21]  Jan Pieter Abrahams,et al.  Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria , 1994, Nature.

[22]  R. Laskey,et al.  A rotary pumping model for helicase function of MCM proteins at a distance from replication forks , 2003, EMBO reports.

[23]  Peter E. Prevelige,et al.  DNA Packaging: A New Class of Molecular Motors , 2002, Current Biology.

[24]  K. Schulten,et al.  Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. , 1998, Biophysical journal.

[25]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[26]  Masasuke Yoshida,et al.  ATP synthase — a marvellous rotary engine of the cell , 2001, Nature Reviews Molecular Cell Biology.

[27]  Andrew G. W. Leslie,et al.  The structure of the central stalk in bovine F1-ATPase at 2.4 Å resolution , 2000, Nature Structural Biology.

[28]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[29]  S. Nosé,et al.  Constant pressure molecular dynamics for molecular systems , 1983 .

[30]  W. Junge,et al.  Viscoelastic dynamics of actin filaments coupled to rotary F-ATPase: angular torque profile of the enzyme. , 2001, Biophysical journal.

[31]  Berk Hess,et al.  P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation. , 2008, Journal of chemical theory and computation.

[32]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[33]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[34]  Bert L. de Groot,et al.  tCONCOORD‐GUI: Visually supported conformational sampling of bioactive molecules , 2009, J. Comput. Chem..

[35]  A. Leslie,et al.  The rotary mechanism of ATP synthase. , 2000, Current Opinion in Structural Biology.

[36]  K. Schulten,et al.  Molecular dynamics study of unbinding of the avidin-biotin complex. , 1997, Biophysical journal.

[37]  Helmut Grubmüller,et al.  Nanoseconds molecular dynamics simulation of primary mechanical energy transfer steps in F1-ATP synthase , 2002, Nature Structural Biology.

[38]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[39]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[40]  J. Weber,et al.  ATP synthase: what we know about ATP hydrolysis and what we do not know about ATP synthesis. , 2000, Biochimica et biophysica acta.

[41]  Hiroyasu Itoh,et al.  Rotation of F1-ATPase: how an ATP-driven molecular machine may work. , 2004, Annual review of biophysics and biomolecular structure.

[42]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[43]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[44]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[45]  Yoshiyuki Sowa,et al.  Bacterial flagellar motor , 2004, Quarterly Reviews of Biophysics.

[46]  Hendrik Sielaff,et al.  Torque generation and elastic power transmission in the rotary FOF1-ATPase , 2009, Nature.

[47]  Masasuke Yoshida,et al.  Mechanically driven ATP synthesis by F1-ATPase , 2004, Nature.

[48]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[49]  J. Allemand,et al.  Single DNA/protein studies with magnetic traps. , 2009, Current opinion in structural biology.

[50]  Masasuke Yoshida,et al.  ATP Hydrolysis and Synthesis of a Rotary Motor V-ATPase from Thermus thermophilus* , 2008, Journal of Biological Chemistry.

[51]  Modeling DNA Dynamics under Steady Deforming Forces and Torques. , 2009, Journal of chemical theory and computation.

[52]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[53]  Laxmikant V. Kale,et al.  NAMD2: Greater Scalability for Parallel Molecular Dynamics , 1999 .

[54]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[55]  Wesley R Browne,et al.  Making molecular machines work , 2006, Nature nanotechnology.

[56]  B. Honig,et al.  A rapid finite difference algorithm, utilizing successive over‐relaxation to solve the Poisson–Boltzmann equation , 1991 .