웨이블릿 부대역의 히스토그램 특성과 통계적 모멘트를 이용한 스테그분석
暂无分享,去创建一个
본 논문은 스테가노그래피 알고리즘에 대한 블라인드 스테그분석 기법을 제안한다. 제안하는 스테그분석기법은 두 가지 형태의 특징 벡터를 추출한다. 첫 번째로, 영상에 정보를 은닉한 후 웨이블릿 부대역의 히스토그램 특성이 변한다는 것을 관찰하고 히스토그램의 위치 변화를 특징으로 이용한다. 두 번째로, 웨이블릿 특성 함수의 통계적 모멘트를 특징으로 이용한다. 첫번째 형태의 특징은 영상을 3-레벨 웨이블릿 변환하여 9개의 고주파 부대역에서 각각 하나의 특징을 추출하여 총 9개의 특징 벡터 얻는다. 두 번째 형태의 특징은 각 부대역별로 3차 모멘트까지 추출하여 39개의 특징 벡터를 얻는다. 총 48개의 특징 벡터를 교사학습을 이용하여 학습한 후 스테고 영상과 커버 영상을 분류한다. 다층 퍼셉트론 신경망 분류기를 이용하여 두 가지 형태의 특징을 입력으로 하여 삽입 데이터의 존재유무를 판별한다. 제안 방법의 성능을 평가하기 위하여 CorelDraw 데이터 베이스 영상이 사용되었고 LSB 방법과 SS방법, blind SS방법, F5방법으로 다양한 삽입률의 스테고 영상을 생성하여 실험한다. 민감도와 특이도, 에러율, ROC 커브 면적 등을 이용하여 제안 방법이 기존의 스테그분석 방법보다 삽입 정보 유무를 검출하는데 효과적임을 보여준다.