Multi-objective parameter estimation via minimal correlation criterion

Abstract The paper deals with the problem of parameter estimation using two different sources of information, namely a time series with dynamic data and steady-state data. The new estimator is based on a two-step procedure: first a multi-objective optimization is performed, leading to a set of Pareto-optimal vectors of parameter estimates and, second, a single model is chosen based on the free-run simulation error which is required to be minimally correlated with the model output. The procedure is general in nature and can be applied to any model representation, but for the sake of simplicity, the new procedure is illustrated using NARX polynomial models for which closed formulae for generating the Pareto-set are readily available. Monte Carlo simulation studies suggest that the new estimator, which does not assume any particular noise model, is fairly unbiased even when the conventional least-squares estimator is biased.

[1]  Ricardo H. C. Takahashi,et al.  Multiobjective nonlinear system identification: a case study with thyristor controlled series capacitor (TCSC) , 2004, Int. J. Syst. Sci..

[2]  Luis A. Aguirre,et al.  Nonlinearities in NARX polynomial models: representation and estimation , 2002 .

[3]  Derrick K. Rollins,et al.  System identification of the human thermoregulatory system using continuous-time block-oriented predictive modeling , 2006 .

[4]  Feng-Sheng Wang,et al.  Multiobjective parameter estimation problems of fermentation processes using a high ethanol tolerance yeast , 2000 .

[5]  H. Akaike A new look at the statistical model identification , 1974 .

[6]  George Stephanopoulos,et al.  Perspectives on the synthesis of plant-wide control structures , 2000 .

[7]  K. Hungerbühler,et al.  Identification of kinetic and thermodynamic reaction parameters from online calorimetric and IR-ATR data using a new combined evaluation algorithm , 2004 .

[8]  Luis A. Aguirre,et al.  Using Steady-State Prior Knowledge to Constrain Parameter Estimates in Nonlinear System Identification , 2002 .

[9]  Tor Arne Johansen,et al.  Identification of non-linear systems using empirical data and prior knowledge - an optimization approach , 1996, Autom..

[10]  Dale E. Seborg,et al.  Constrained parameter estimation with applications to blending operations , 2000 .

[11]  R. Pearson,et al.  Gray-box identification of block-oriented nonlinear models , 2000 .

[12]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[13]  Sheng Chen,et al.  Orthogonal least squares methods and their application to non-linear system identification , 1989 .

[14]  Herbert J. A. F. Tulleken,et al.  Grey-box modelling and identification using physical knowledge and bayesian techniques , 1993, Autom..

[15]  L. A. Aguirre,et al.  Imposing steady-state performance on identified nonlinear polynomial models by means of constrained parameter estimation , 2004 .

[16]  Fabrizio Lorito Identification of a grey-box model of nonlinear current transformers for simulation purposes , 1998 .

[17]  Ricardo H. C. Takahashi,et al.  Nonlinear Identification Using Prior Knowledge of Fixed Points: a Multiobjective Approach , 2003, Int. J. Bifurc. Chaos.

[18]  Tor Arne Johansen,et al.  Constrained and regularized system identification , 1997 .

[19]  W. Harmon Ray,et al.  On the Mathematical Modeling of Polymerization Reactors , 1972 .

[20]  Ferenc Szeifert,et al.  Genetic programming for the identification of nonlinear input-output models , 2005 .

[21]  D. Sarkar,et al.  Pareto-optimal solutions for multi-objective optimization of fed-batch bioreactors using nondominated sorting genetic algorithm. , 2005 .

[22]  N. Draper,et al.  Applied Regression Analysis. , 1967 .

[23]  L. A. Aguirre,et al.  Use of a priori information in the identification of global nonlinear models-a case study using a buck converter , 2000 .

[24]  I. J. Leontaritis,et al.  Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .

[25]  William L. Luyben,et al.  Use of auxiliary information in system identification , 1993 .

[26]  L. A. Aguirre,et al.  Improved structure selection for nonlinear models based on term clustering , 1995 .

[27]  Stephen A. Billings,et al.  An alternative solution to the model structure selection problem , 2001, IEEE Trans. Syst. Man Cybern. Part A.

[28]  L. Piroddi,et al.  An identification algorithm for polynomial NARX models based on simulation error minimization , 2003 .

[29]  Ronald K. Pearson,et al.  Nonlinear model-based control using second-order Volterra models , 1995, Autom..

[30]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[31]  Sheng Chen,et al.  Identification of MIMO non-linear systems using a forward-regression orthogonal estimator , 1989 .

[32]  J. Abonyi,et al.  Model Order Selection of Nonlinear Input-Output Models - A Clustering Based Approach , 2004 .

[33]  Marco Lovera,et al.  On the role of prefiltering in nonlinear system identification , 2005, IEEE Transactions on Automatic Control.