End-To-End Dilated Variational Autoencoder with Bottleneck Discriminative Loss for Sound Morphing - A Preliminary Study

We present a preliminary study on an end-to-end variational autoencoder (VAE) for sound morphing. Two VAE variants are compared: VAE with dilation layers (DC-VAE) and VAE only with regular convolutional layers (CC-VAE). We combine the following loss functions: 1) the time-domain mean-squared error for reconstructing the input signal, 2) the Kullback-Leibler divergence to the standard normal distribution in the bottleneck layer, and 3) the classification loss calculated from the bottleneck representation. On a database of spoken digits, we use 1-nearest neighbor classification to show that the sound classes separate in the bottleneck layer. We introduce the Mel-frequency cepstrum coefficient dynamic time warping (MFCC-DTW) deviation as a measure of how well the VAE decoder projects the class center in the latent (bottleneck) layer to the center of the sounds of that class in the audio domain. In terms of MFCC-DTW deviation and 1-NN classification, DC-VAE outperforms CC-VAE. These results for our parametrization and our dataset indicate that DC-VAE is more suitable for sound morphing than CC-VAE, since the DC-VAE decoder better preserves the topology when mapping from the audio domain to the latent space. Examples are given both for morphing spoken digits and drum sounds.

[1]  Brendan J. Frey,et al.  k-Sparse Autoencoders , 2013, ICLR.

[2]  A. P. Dawid,et al.  Generative or Discriminative? Getting the Best of Both Worlds , 2007 .

[3]  Tara N. Sainath,et al.  Deep Learning for Audio Signal Processing , 2019, IEEE Journal of Selected Topics in Signal Processing.

[4]  Stefano Ermon,et al.  Audio Super Resolution using Neural Networks , 2017, ICLR.

[5]  Michael I. Jordan,et al.  On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes , 2001, NIPS.

[6]  Adrien Bitton,et al.  Generative timbre spaces with variational audio synthesis , 2018, ArXiv.

[7]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[8]  I. Xenakis,et al.  Formalized Music: Thought and Mathematics in Composition , 1971 .

[9]  Anil A. Bharath,et al.  Inverting the Generator of a Generative Adversarial Network , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[10]  Lior Wolf,et al.  A Universal Music Translation Network , 2018, ICLR.

[11]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Uwe Andresen A New Way in Sound Synthesis , 1979 .

[13]  Chris Donahue,et al.  Semantically Decomposing the Latent Spaces of Generative Adversarial Networks , 2017, ICLR.

[14]  Nicolas Usunier,et al.  SING: Symbol-to-Instrument Neural Generator , 2018, NeurIPS.

[15]  Stefan Bilbao Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics , 2009 .

[16]  S. Chiba,et al.  Dynamic programming algorithm optimization for spoken word recognition , 1978 .

[17]  Karen Simonyan,et al.  Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders , 2017, ICML.

[18]  Yu Zhang,et al.  Learning Latent Representations for Speech Generation and Transformation , 2017, INTERSPEECH.

[19]  Yoshua Bengio,et al.  SampleRNN: An Unconditional End-to-End Neural Audio Generation Model , 2016, ICLR.

[20]  Heiga Zen,et al.  Parallel WaveNet: Fast High-Fidelity Speech Synthesis , 2017, ICML.

[21]  Dustin Tran,et al.  Operator Variational Inference , 2016, NIPS.

[22]  Franciska de Jong,et al.  Generative Probabilistic Models , 2007, Multimedia Retrieval.

[23]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[24]  Alex Graves,et al.  Conditional Image Generation with PixelCNN Decoders , 2016, NIPS.

[25]  Xavier Serra,et al.  A sound analysis/synthesis system based on a deterministic plus stochastic decomposition , 1990 .

[26]  Sebastian Nowozin,et al.  Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks , 2017, ICML.

[27]  Heiga Zen,et al.  WaveNet: A Generative Model for Raw Audio , 2016, SSW.

[28]  Oriol Vinyals,et al.  Neural Discrete Representation Learning , 2017, NIPS.

[29]  Hyunjung Shim,et al.  High Quality Bidirectional Generative Adversarial Networks , 2018, ArXiv.

[30]  Koray Kavukcuoglu,et al.  Pixel Recurrent Neural Networks , 2016, ICML.

[31]  Marco Cuturi,et al.  Soft-DTW: a Differentiable Loss Function for Time-Series , 2017, ICML.

[32]  Carl Doersch,et al.  Tutorial on Variational Autoencoders , 2016, ArXiv.

[33]  Julius O. Smith,et al.  Spectral modeling synthesis: A sound analysis/synthesis based on a deterministic plus stochastic decomposition , 1990 .

[34]  Chris Donahue,et al.  Synthesizing Audio with Generative Adversarial Networks , 2018, ArXiv.

[35]  Ole Winther,et al.  Autoencoding beyond pixels using a learned similarity metric , 2015, ICML.

[36]  Vladlen Koltun,et al.  Multi-Scale Context Aggregation by Dilated Convolutions , 2015, ICLR.

[37]  John M. Chowning,et al.  The Synthesis of Complex Audio Spectra by Means of Frequency Modulation , 1973 .

[38]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.