Magnetic Field Sensors Based on Giant Magnetoresistance (GMR) Technology: Applications in Electrical Current Sensing

The 2007 Nobel Prize in Physics can be understood as a global recognition to the rapid development of the Giant Magnetoresistance (GMR), from both the physics and engineering points of view. Behind the utilization of GMR structures as read heads for massive storage magnetic hard disks, important applications as solid state magnetic sensors have emerged. Low cost, compatibility with standard CMOS technologies and high sensitivity are common advantages of these sensors. This way, they have been successfully applied in a lot different environments. In this work, we are trying to collect the Spanish contributions to the progress of the research related to the GMR based sensors covering, among other subjects, the applications, the sensor design, the modelling and the electronic interfaces, focusing on electrical current sensing applications.

[1]  E. Castano,et al.  High sensitivity linear position sensor developed using granular Ag–Co giant magnetoresistances , 2005 .

[2]  Young,et al.  Giant magnetoresistance in heterogeneous Cu-Co alloys. , 1992, Physical review letters.

[3]  Ferran Reverter,et al.  Direct interface circuit to linearise resistive sensor bridges , 2008 .

[4]  Bernard Dieny,et al.  Magnetotransport properties of magnetically soft spin‐valve structures (invited) , 1991 .

[5]  Diego Ramírez Muñoz,et al.  Current loop generated from a generalized impedance converter: A new sensor signal conditioning circuit , 2005 .

[6]  Paulo P. Freitas,et al.  Tuning of MgO barrier magnetic tunnel junction bias current for picotesla magnetic field detection , 2006 .

[7]  Gil U. Lee,et al.  A biosensor based on magnetoresistance technology. , 1998, Biosensors & bioelectronics.

[8]  J. Vergara,et al.  Effect of annealing processes on the magneto-resistance in pulsed laser ablated-deposited Ag90Co10 and Co10Cu90 films , 2001 .

[9]  Candid Reig,et al.  Design, fabrication, and analysis of a spin-valve based current sensor , 2004 .

[10]  I. Arruego,et al.  Magnetic giant magnetoresistance commercial off the shelf for space applications , 2008 .

[11]  Marina Díaz-Michelena,et al.  Small Magnetic Sensors for Space Applications , 2009, Sensors.

[12]  J. Sánchez Moreno,et al.  Temperature compensation of Wheatstone bridge magnetoresistive sensors based on generalized impedance converter with input reference current , 2006 .

[13]  J. Lenz A review of magnetic sensors , 1990, Proc. IEEE.

[14]  H. Guerrero,et al.  Magnetic Technologies for Space: COTS Sensors for Flight Applications and Magnetic Testing Facilities for Payloads , 2007 .

[15]  J. A. Lluch,et al.  Signal conditioning for GMR magnetic sensors: Applied to traffic speed monitoring GMR sensors , 2007 .

[16]  José Pelegrí-Sebastiá,et al.  A novel spin-valve bridge sensor for current sensing , 2004, IEEE Transactions on Instrumentation and Measurement.

[17]  Candid Reig,et al.  A new approach to the crystal growth of Hg1−xMnxTe by the cold travelling heater method (CTHM) , 2001 .

[18]  D. Ramirez,et al.  GMR SENSORS MANAGE BATTERIES , 1999 .

[19]  J. Letosa,et al.  Modelization of current sensors by finite elements method , 2004 .

[20]  Albert Fert,et al.  Giant magnetoresistance in magnetic multilayered nanowires , 1994 .

[21]  A. V. Pohm,et al.  Universal HSPICE macromodel for giant magnetoresistance memory bits , 2000 .

[22]  E. Castaño,et al.  High Temperature Circular Position Sensor Based on a Giant Magnetoresistance Nanogranular Ag Co Alloy , 2004 .

[23]  F. J. Gracia,et al.  High temperature circular position sensor based on a giant magnetoresistance nanogranular Ag/sub x/Co/sub 1-x/ alloy , 2004 .

[24]  J. Ansermet,et al.  Giant magnetoresistance of nanowires of multilayers , 1994 .

[25]  Càndid Reig,et al.  Crystal growth of Hg1-xMnxSe for infrared detection , 2007, Microelectron. J..

[26]  L. Sainz,et al.  Microsystem for the immunomagnetic detection of Escherichia coli O157:H7 , 2008 .

[27]  D. Ramírez Muñoz,et al.  Design and experimental verification of a smart sensor to measure the energy and power consumption in a one-phase AC line , 2009 .

[28]  T. Sagara,et al.  Magnetoresistive Sensors , 1993, IEEE Translation Journal on Magnetics in Japan.

[29]  Candid Reig,et al.  Low-current sensing with specular spin valve structures , 2005 .

[30]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[31]  Silvia Casans Berga,et al.  Constant Current Drive for Resistive Sensors Based on Generalized Impedance Converter , 2008, IEEE Transactions on Instrumentation and Measurement.

[32]  R. Coehoorn,et al.  Magnetic multilayers and giant magnetoresistance : fundamentals and industrial applications , 2000 .

[33]  N. P. Barradas,et al.  Magnetoresistance enhancement in specular, bottom-pinned, Mn83Ir17 spin valves with nano-oxide layers , 2000 .

[34]  C. Aroca,et al.  The influence of anisotropy on the magnetoresistance of permalloy-copper-permalloy thin films , 2002 .

[35]  Robert E. Fontana,et al.  Low-field magnetoresistance in magnetic tunnel junctions prepared by contact masks and lithography: 25% magnetoresistance at 295 K in mega-ohm micron-sized junctions (abstract) , 1997 .

[36]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[37]  J. Pelegrí,et al.  Giant magnetoresistive sensor in conductance control of switching regulators , 2000 .

[38]  Vicente Amigó,et al.  Insights into pulsed electrodeposition of GMR multilayered nanowires , 2007 .

[39]  A. Carlosena,et al.  Performance Tradeoffs of Three Novel GMR Contactless Angle Detectors , 2009, IEEE Sensors Journal.

[40]  Alfredo García-Arribas,et al.  Advantages of nonlinear giant magnetoimpedance for sensor applications , 2003 .

[41]  C. Reig,et al.  Electrical Isolators Based on Tunneling Magnetoresistance Technology , 2008, IEEE Transactions on Magnetics.

[42]  Binasch,et al.  Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. , 1989, Physical review. B, Condensed matter.

[43]  Mark S. Johnson,et al.  Spin electronics , 2003, SPIE OPTO.

[44]  Paolo Antognetti,et al.  Semiconductor Device Modeling with Spice , 1988 .

[45]  R. S. Beech,et al.  Magnetic field sensors using GMR multilayer , 1994 .

[46]  J. P. Andrés,et al.  Enhancement of GMR in as-deposited CoCu granular films with RF sputtering power , 1999 .

[47]  Antonin Platil,et al.  Wattmeter with AMR sensor , 2005 .

[48]  C. Reig,et al.  Full Wheatstone Bridge Spin-Valve Based Sensors for IC Currents Monitoring , 2009, IEEE Sensors Journal.

[49]  Andrey V. Svalov,et al.  Spin-valve structures with Co/Tb-based multilayers , 2002 .

[50]  P. P. Freitas,et al.  Spin-valve current sensor for industrial applications , 2003 .

[51]  C. Reig,et al.  Modeling of Magnetoresistive-Based Electrical Current Sensors: A Technological Approach , 2007, IEEE Sensors Journal.

[52]  J. Alberola,et al.  Vibration Detector based on GMR Sensors , 2007, 2007 IEEE Instrumentation & Measurement Technology Conference IMTC 2007.

[53]  S Arana,et al.  Magnetoresistive immunosensor for the detection of Escherichia coli O157:H7 including a microfluidic network. , 2009, Biosensors & bioelectronics.

[54]  Per Ohlckers,et al.  Compensation of sensitivity shift in piezoresistive pressure sensors using linear voltage excitation , 1995 .

[55]  A. Hoffmann,et al.  Giant magnetoresistance in ferromagnet/superconductor superlattices. , 2005, Physical review letters.

[56]  M. Vázquez,et al.  A miniature dc current sensor based on magnetoimpedance , 1997 .