Effect of A -site cation ordering on the magnetoelectric properties in [ ( LaMnO 3 ) m / ( SrMnO 3 ) m ] n artificial superlattices

In order to evaluate the effect of charge transfer and/or charge ordering in ${\mathrm{La}}_{1\ensuremath{-}x}{\mathrm{Sr}}_{x}{\mathrm{MnO}}_{3}$ on the magnetic and transport properties, a library of $[({\mathrm{LaMnO}}_{3}{)}_{m}/({\mathrm{SrMnO}}_{3}{)}_{m}{]}_{n}$ superlattices have been fabricated by the combinatorial pulsed laser deposition method. The properties of superlattices were found to depend strongly on the periodicity m; superlattices of $ml~4$ behaved like a solid solution ${\mathrm{La}}_{0.5}{\mathrm{Sr}}_{0.5}{\mathrm{MnO}}_{3}$ film, while the superlattices of $mg4$ were significantly different from the solid solution. These superlattices exhibited a higher resistivity and lower Curie temperature than $ml~4$ superlattices. The results indicate that the properties of the superlattices are dominated not only by the magnetic interaction between the superlattice constituents but also by carrier ${(e}_{g}$ electrons) transfer thorough the superlattice interface. The contribution of carrier transfer is supported by the magnetoelectric properties of another library of $[({\mathrm{La}}_{0.8}{\mathrm{Sr}}_{0.2}{\mathrm{MnO}}_{3}{)}_{8}/({\mathrm{La}}_{0.2}{\mathrm{Sr}}_{0.8}{\mathrm{MnO}}_{3}{)}_{m}{]}_{12}$ superlattices. The A-site cation order can change both effective carrier concentration and magnetic interaction.

[1]  Masashi Kawasaki,et al.  Temperature-gradient epitaxy under in situ growth mode diagnostics by scanning reflection high-energy electron diffraction , 2002 .

[2]  Masashi Kawasaki,et al.  Parallel integration and characterization of nanoscaled epitaxial lattices by concurrent molecular layer epitaxy and diffractometry , 2001 .

[3]  Masashi Kawasaki,et al.  Rapid construction of a phase diagram of doped Mott insulators with a composition-spread approach , 2000 .

[4]  S. Ogale,et al.  Indications of phase separation in polycrystalline La 1 − x Sr x MnO 3 for x ≈ 0.5 , 2000 .

[5]  Y. Tokura,et al.  La 1 − x Sr x MnO 3 superlattices composed of ferromagnetic x = 0.4 and antiferromagnetic x = 0.55 layers , 2000 .

[6]  Y. Tokura,et al.  Orbital-State-Mediated Phase-Control of Manganites , 1999 .

[7]  Masashi Kawasaki,et al.  Parallel fabrication of artificially designed superlattices by combinatorial laser MBE , 1999 .

[8]  A. Haghiri-Gosnet,et al.  Growth and magnetoresistive properties of (LaMnO3)m(SrMnO3)n superlattices , 1999 .

[9]  T. Kawai,et al.  Enhancement of magnetoresistance in spin frustrated (La,Sr)MnO 3 /LaFeO 3 artificial lattices , 1999 .

[10]  J. Mydosh,et al.  Spatially Inhomogeneous Metal-Insulator Transition in Doped Manganites. , 1999, Science.

[11]  S. Cheong,et al.  Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites , 1999, Nature.

[12]  Dagotto,et al.  Phase separation scenario for manganese oxides and related materials , 1999, Science.

[13]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[14]  H. Fujishiro,et al.  Phase transition to antiferromagnetic state in La1-XSrXMnO3 (x≥0.5) , 1998 .

[15]  K. H. Kim,et al.  Polaron Absorption in a Perovskite Manganite La0.7Ca0.3MnO3 , 1998, cond-mat/9804167.

[16]  C. Marquina,et al.  Oxygen isotope effects in(La0.5Nd0.5)2/3Ca1/3MnO3: Relevance of the electron-phonon interaction to the phase segregation , 1998 .

[17]  J. Goodenough,et al.  LaMnO 3+ δ Revisited , 1997 .

[18]  W. Gallagher,et al.  Growth and giant magnetoresistance properties of La‐deficient LaxMnO3−δ (0.67≤x≤1) films , 1995 .

[19]  Kido,et al.  Insulator-metal transition and giant magnetoresistance in La1-xSrxMnO3. , 1995, Physical review. B, Condensed matter.

[20]  Littlewood,et al.  Double exchange alone does not explain the resistivity of La1-xSrxMnO3. , 1995, Physical review letters.

[21]  H. Koinuma,et al.  Atomic Control of the SrTiO3 Crystal Surface , 1994, Science.

[22]  T. Takeda,et al.  Magnetic Structure of the Cubic Perovskite Type SrMnO 3 , 1974 .

[23]  Philip W. Anderson,et al.  Considerations on Double Exchange , 1955 .

[24]  A. Michel,et al.  Directional effects of heavy-ion irradiation in Tb/Fe multilayers , 2000 .

[25]  R. Renzi,et al.  139 La NMR in lanthanum manganites: Indication of the presence of magnetic polarons from spectra and nuclear relaxations , 1998 .

[26]  R. Venkatesh,et al.  Elastic and other associated properties of C 60 , 1997 .