Leakage detection and localization on water transportation pipelines: a multi-label classification approach

[1]  Jianqiang Gao,et al.  A spectral-spatial kernel-based method for hyperspectral imagery classification , 2017 .

[2]  Lizhong Xu,et al.  A Novel Spatial Analysis Method for Remote Sensing Image Classification , 2016, Neural Processing Letters.

[3]  Lizhong Xu,et al.  A spectral–textural kernel-based classification method of remotely sensed images , 2016, Neural Computing and Applications.

[4]  Sonali Agarwal,et al.  A Map Reduce based Support Vector Machine for Big Data Classification , 2015 .

[5]  Germán Castellanos-Domínguez,et al.  Evaluation of Example-Based Measures for Multi-label Classification Performance , 2015, IWBBIO.

[6]  Min-Ling Zhang,et al.  A Review on Multi-Label Learning Algorithms , 2014, IEEE Transactions on Knowledge and Data Engineering.

[7]  Jianqiang Gao,et al.  A kernel-based block matrix decomposition approach for the classification of remotely sensed images , 2014, Appl. Math. Comput..

[8]  A. J. Whittle,et al.  Sensor Networks for Monitoring and Control of Water Distribution Systems , 2013 .

[9]  Mohammad Burhan Abdulla,et al.  Pipeline leak detection using artificial neural network: Experimental study , 2013, 2013 5th International Conference on Modelling, Identification and Control (ICMIC).

[10]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[11]  Grigorios Tsoumakas,et al.  MULAN: A Java Library for Multi-Label Learning , 2011, J. Mach. Learn. Res..

[12]  V. Puig,et al.  Leak detection and isolation in water distribution networks using principal component analysis and structured residuals , 2010, 2010 Conference on Control and Fault-Tolerant Systems (SysTol).

[13]  Li Ping,et al.  Approximate entropy-based leak detection using artificial neural network in water distribution pipelines , 2010, 2010 11th International Conference on Control Automation Robotics & Vision.

[14]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[15]  Ravi Sankar,et al.  Time Series Prediction Using Support Vector Machines: A Survey , 2009, IEEE Computational Intelligence Magazine.

[16]  Geoff Holmes,et al.  Multi-label Classification Using Ensembles of Pruned Sets , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[17]  Xijin Tang,et al.  Text classification based on multi-word with support vector machine , 2008, Knowl. Based Syst..

[18]  Grigorios Tsoumakas,et al.  An Empirical Study of Lazy Multilabel Classification Algorithms , 2008, SETN.

[19]  Grigorios Tsoumakas,et al.  Random k -Labelsets: An Ensemble Method for Multilabel Classification , 2007, ECML.

[20]  Zhi-Hua Zhou,et al.  ML-KNN: A lazy learning approach to multi-label learning , 2007, Pattern Recognit..

[21]  Grigorios Tsoumakas,et al.  Multi-Label Classification: An Overview , 2007, Int. J. Data Warehous. Min..

[22]  Reshma Khemchandani,et al.  Twin Support Vector Machines for Pattern Classification , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  L. Nachman,et al.  PIPENET: A Wireless Sensor Network for Pipeline Monitoring , 2007, 2007 6th International Symposium on Information Processing in Sensor Networks.

[24]  Min Han,et al.  Support Vector Echo-State Machine for Chaotic Time-Series Prediction , 2007, IEEE Transactions on Neural Networks.

[25]  Ching Y. Suen,et al.  Automatic model selection for the optimization of SVM kernels , 2005, Pattern Recognit..

[26]  Costas Papadimitriou,et al.  Leakage detection in water pipe networks using a Bayesian probabilistic framework , 2003 .

[27]  Hyeran Byun,et al.  Applications of Support Vector Machines for Pattern Recognition: A Survey , 2002, SVM.

[28]  Jörg Kindermann,et al.  Text Categorization with Support Vector Machines. How to Represent Texts in Input Space? , 2002, Machine Learning.

[29]  Daphne Koller,et al.  Support Vector Machine Active Learning with Applications to Text Classification , 2000, J. Mach. Learn. Res..

[30]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[31]  Robert M. Haralick,et al.  Feature normalization and likelihood-based similarity measures for image retrieval , 2001, Pattern Recognit. Lett..

[32]  Shigeo Abe,et al.  Support Vector Machines for Pattern Classification , 1999, Advances in Pattern Recognition.

[33]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[34]  Wojciech Moczulski,et al.  A Method of Leakage Location in Water Distribution Networks using Artificial Neuro-Fuzzy System , 2015 .

[35]  Grigorios Tsoumakas,et al.  Ieee Transactions on Knowledge and Data Engineering Random K-labelsets for Multi-label Classification , 2022 .

[36]  Dominik Brugger,et al.  Parallel Support Vector Machines , 2006 .