ON THE ACCURACY OF ASYMPTOTIC APPROXIMATIONS TO THE LOG-GAMMA AND RIEMANN–SIEGEL THETA FUNCTIONS
暂无分享,去创建一个
[1] Wolfgang Gabcke,et al. Neue Herleitung und explizite Restabschätzung der Riemann-Siegel-Formel , 2015 .
[2] G. Nemes,et al. Generalization of Binet's Gamma function formulas , 2013 .
[3] C. Gauss,et al. DISQUISITIONES GENERALES CIRCA SERIEM INFINITAM , 2011 .
[4] C. Hermite. Sur la fonction log Г(a) , 2009 .
[5] Jonathan M. Borwein,et al. Computational strategies for the Riemann zeta function , 2000 .
[6] D. E. G. Hare,et al. Computing the Principal Branch of log-Gamma , 1997, J. Algorithms.
[7] John R. King,et al. Stokes Phenomenon and Matched Asymptotic Expansions , 1995, SIAM J. Appl. Math..
[8] M. Berry,et al. The Riemann-Siegel expansion for the zeta function: high orders and remainders , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[9] L. Gordon,et al. The Gamma Function , 1994, Series and Products in the Development of Mathematics.
[10] R. E. Meyer. A Simple Explanation of the Stokes Phenomenon , 1989, SIAM Rev..
[11] Karl Dilcher,et al. Asymptotic behaviour of Bernoulli, Euler, and generalized Bernoulli polynomials , 1987 .
[12] Ian Tweddle,et al. Approximating n! Historical origins and error analysis , 1984 .
[13] G. Pólya,et al. Problems and theorems in analysis , 1983 .
[14] Richard P. Brent,et al. On the zeros of the Riemann zeta function in the critical strip III , 1985 .
[15] Richard P. Brent,et al. On the zeros of the Riemann zeta function in the critical strip , 1979 .
[16] Richard P. Brent,et al. High Precision Coefficients Related to the Zeta Function. , 1977 .
[17] F. Olver. Asymptotics and Special Functions , 1974 .
[18] Harold M. Edwards,et al. Riemann's Zeta Function , 1974 .
[19] R. Spira. Calculation of the Gamma Function by Stirling's Formula , 1971 .
[20] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[21] H. Behnke,et al. Theorie der analytischen Funktionen einer komplexen Veränderlichen , 1965 .
[22] D. H. Lehmer. Extended computation of the Riemann zeta-function , 1956 .
[23] G. Watson. Bessel Functions. (Scientific Books: A Treatise on the Theory of Bessel Functions) , 1923 .
[24] Edmund Taylor Whittaker,et al. A Course of Modern Analysis , 2021 .
[25] J.-P. Gram,et al. Note sur les zéros de la fonction ζ(s) de Riemann , 1903 .