Ocean worlds in the outer solar system

Many outer solar system bodies are thought to harbor liquid water oceans beneath their ice shells. This article first reviews how such oceans are detected. We then discuss how they are maintained, when they formed, and what the oceans' likely characteristics are. We focus in particular on Europa, Ganymede, Callisto, Titan, and Enceladus, bodies for which there is direct evidence of subsurface oceans. We also consider candidate ocean worlds such as Pluto and Triton.

[1]  Harold F. Levison,et al.  Differential Cratering of Synchronously Rotating Satellites by Ecliptic Comets , 2001 .

[2]  H. J. Melosh,et al.  Hydrocode simulation of Ganymede and Europa cratering trends – How thick is Europa’s crust? , 2014 .

[3]  Robert T. Pappalardo,et al.  Titan: An exogenic world? , 2011 .

[4]  S. Hensley,et al.  Titan's Rotation Reveals an Internal Ocean and Changing Zonal Winds , 2008, Science.

[5]  R. Tyler Comparative estimates of the heat generated by ocean tides on icy satellites in the outer Solar System , 2014 .

[6]  M. Ćuk,et al.  DYNAMICAL EVIDENCE FOR A LATE FORMATION OF SATURN’S MOONS , 2016, 1603.07071.

[7]  J. Wisdom Tidal dissipation at arbitrary eccentricity and obliquity , 2008 .

[8]  T. Spohn,et al.  Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects , 2006 .

[9]  B. R. Tufts,et al.  Pits and uplifts on Europa , 2003 .

[10]  J. A. Burns,et al.  Enceladus's measured physical libration requires a global subsurface ocean , 2015, 1509.07555.

[11]  R. Canup,et al.  Constraints on gas giant satellite formation from the interior states of partially differentiated satellites , 2008 .

[12]  S. Charnoz,et al.  Accretion of Saturn's mid-sized moons during the viscous spreading of young massive rings: Solving the paradox of silicate-poor rings versus silicate-rich moons , 2011, 1109.3360.

[13]  J. Moore,et al.  Flooding of Ganymede's bright terrains by low-viscosity water-ice lavas , 2001, Nature.

[14]  H. Hussmann,et al.  Non-steady state tidal heating of Enceladus , 2014 .

[15]  Francis Nimmo,et al.  Thermal evolution of Pluto and implications for surface tectonics and a subsurface ocean , 2011 .

[16]  S. Charnoz,et al.  Did Saturn's rings form during the Late Heavy Bombardment? , 2008, 0809.5073.

[17]  I. Matsuyama,et al.  True polar wander on Europa from global-scale small-circle depressions , 2008, Nature.

[18]  R. Carlson,et al.  Distribution of hydrate on Europa: Further evidence for sulfuric acid hydrate , 2005 .

[19]  R. Pierrehumbert,et al.  Hydrothermal plume dynamics on Europa: Implications for chaos formation , 2004 .

[20]  F. Nimmo,et al.  Rotational dynamics and internal structure of Titan , 2011 .

[21]  L. Prockter,et al.  Evidence for subduction in the ice shell of Europa , 2014 .

[22]  M. Zolotov An oceanic composition on early and today's Enceladus , 2007 .

[23]  Tilman Spohn,et al.  Oceans in the icy Galilean satellites of Jupiter , 2002 .

[24]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[25]  Jonathan I. Lunine,et al.  Enceladus' plume: Compositional evidence for a hot interior , 2007 .

[26]  G. Schubert,et al.  The Tidal Response of Europa , 2000 .

[27]  F. Nimmo,et al.  Shell thickness variations and the long-wavelength topography of Titan , 2010 .

[28]  G. Schubert,et al.  A whole-moon thermal history model of Europa: Impact of hydrothermal circulation and salt transport , 2012 .

[29]  William M. Grundy,et al.  Spectroscopy from Space , 2014 .

[30]  E. Shock,et al.  Hydrothermal processing of cometary volatiles--applications to Triton. , 1993, Icarus.

[31]  J. Lunine,et al.  Ethane Ocean on Titan , 1983, Science.

[32]  P. Schenk Thickness consb ints on the icy shells of the galilean satellites from a comparison of crater shapes , 2022 .

[33]  R. Kirk,et al.  Subsurface Energy Storage and Transport for Solar-Powered Geysers on Triton , 1990, Science.

[34]  D. Stevenson,et al.  Episodic volcanism of tidally heated satellites with application to Io , 1986 .

[35]  C. Russell,et al.  Saturn's very axisymmetric magnetic field: No detectable secular variation or tilt , 2011 .

[36]  Francesca Bovolo,et al.  RIME: Radar for Icy Moon Exploration , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[37]  P. Cassen,et al.  Melting of Io by Tidal Dissipation , 1979, Science.

[38]  R. Jurgens,et al.  Large Longitude Libration of Mercury Reveals a Molten Core , 2007, Science.

[39]  J. Hunter Waite,et al.  Titan from Cassini-Huygens , 2010 .

[40]  F. Nimmo,et al.  The role of episodic overturn in generating the surface geology and heat flow on Enceladus , 2010 .

[41]  W. Henning,et al.  The interior and orbital evolution of Charon as preserved in its geologic record , 2015 .

[42]  C. Sotin,et al.  Interiors and Evolution of Icy Satellites , 2015 .

[43]  D. Jurdy True polar wander , 1981 .

[44]  R. Cox,et al.  Impact breaching of Europa's ice: Constraints from numerical modeling , 2015 .

[45]  C. Russell,et al.  Searching for liquid water in Europa by using surface observatories. , 2002, Astrobiology.

[46]  A. Trinh,et al.  The diurnal libration and interior structure of Enceladus , 2016 .

[47]  R. Canup,et al.  Origin of a partially differentiated Titan , 2010 .

[48]  R. Pappalardo,et al.  Subsurface Water Oceans on Icy Satellites: Chemical Composition and Exchange Processes , 2010 .

[49]  Jennifer M. Brown,et al.  Hydrothermal systems in small ocean planets. , 2007, Astrobiology.

[50]  F. Nimmo,et al.  Recent orbital evolution and the internal structures of Enceladus and Dione , 2009 .

[51]  T. Ahrens,et al.  Shock properties of H2O ice , 2005 .

[52]  M. Beuthe Tidal Love numbers of membrane worlds: Europa, Titan, and Co. , 2015, 1504.04574.

[53]  V. Solomatov,et al.  Scaling of temperature‐ and stress‐dependent viscosity convection , 1995 .

[54]  Luciano Iess,et al.  Rhea gravity field and interior modeling from Cassini data analysis , 2016 .

[55]  T. Hoolst,et al.  The obliquity of Enceladus , 2015, 1512.00285.

[56]  C. Glein Noble gases, nitrogen, and methane from the deep interior to the atmosphere of Titan , 2015 .

[57]  R. H. Brown,et al.  An observed correlation between plume activity and tidal stresses on Enceladus , 2013, Nature.

[58]  David L. Goldsby,et al.  Superplastic deformation of ice: Experimental observations , 2001 .

[59]  T. Spohn,et al.  A model for the interior structure, evolution, and differentiation of Callisto , 2003 .

[60]  R. Pappalardo,et al.  Diapir-induced reorientation of Saturn's moon Enceladus , 2006, Nature.

[61]  Douglas P. Hamilton,et al.  Neptune's capture of its moon Triton in a binary–planet gravitational encounter , 2006, Nature.

[62]  J. Lunine,et al.  Formation of the Galilean satellites in a gaseous nebula , 1982 .

[63]  J. S. Lewis Satellites of the Outer Planets: Thermal Models , 1971, Science.

[64]  J. Arlot,et al.  Strong tidal dissipation in Io and Jupiter from astrometric observations , 2009, Nature.

[65]  G. Schubert,et al.  The tidal response of Ganymede and Callisto with and without liquid water oceans , 2003 .

[66]  S. Asmar,et al.  The Tides of Titan , 2012, Science.

[67]  Randolph L. Kirk,et al.  Thermal evolution of a differentiated Ganymede and implications for surface features , 1987 .

[68]  G. Glatzmaier,et al.  Tidal heating in icy satellite oceans , 2014 .

[69]  Johannes Wicht,et al.  An experimental and numerical study of librationally driven flow in planetary cores and subsurface oceans , 2009 .

[70]  R. Canup,et al.  ON A GIANT IMPACT ORIGIN OF CHARON, NIX, AND HYDRA , 2011 .

[71]  David J. Stevenson,et al.  Coupled Orbital and Thermal Evolution of Ganymede , 1997 .

[72]  D. Blankenship,et al.  Ocean-driven heating of Europa/'s icy shell at low latitudes , 2014 .

[73]  W. Moore,et al.  Thermal equilibrium in Europa's ice shell , 2006 .

[74]  J. Wisdom,et al.  Tidal evolution of the Uranian satellites: III. Evolution through the Miranda-Umbriel 3:1, Miranda-Ariel 5:3, and Ariel-Umbriel 2:1 mean-motion commensurabilities , 1990 .

[75]  W. McKinnon,et al.  Radar Sounding of Convecting Ice Shells in the Presence of Convection: Application to Europa, Ganymede, and Callisto , 2005 .

[76]  J. Shirley,et al.  Europa’s ridged plains and smooth low albedo plains: Distinctive compositions and compositional gradients at the leading side–trailing side boundary , 2010 .

[77]  R. Greeley,et al.  Geological evidence for solid-state convection in Europa's ice shell , 1998, Nature.

[78]  Clark R. Chapman,et al.  Does Europa have a subsurface ocean? Evaluation of the geological evidence , 1999 .

[79]  Michael E. Brown,et al.  No sodium in the vapour plumes of Enceladus , 2009, Nature.

[80]  Paul D. Feldman,et al.  The search for a subsurface ocean in Ganymede with Hubble Space Telescope observations of its auroral ovals , 2015 .

[81]  D. Stevenson,et al.  Thermal state of an ice shell on Europa , 1989 .

[82]  Hauke Hussmann,et al.  Thermal Equilibrium States of Europa's Ice Shell: Implications for Internal Ocean Thickness and Surface Heat Flow , 2002 .

[83]  D. Blankenship,et al.  VHF Radar Sounding of Europa's Subsurface Properties and Processes: The View from Earth , 2009 .

[84]  Charles A. Hibbitts,et al.  Hydrated Salt Minerals on Ganymede's Surface: Evidence of an Ocean Below , 2001, Science.

[85]  C. Murray,et al.  Solar System Dynamics: Expansion of the Disturbing Function , 1999 .

[86]  F. Nimmo Stresses generated in cooling viscoelastic ice shells: Application to Europa , 2004 .

[87]  P. Schenk,et al.  Pristine impact crater morphology on Pluto – Expectations for New Horizons , 2015 .

[88]  C. Porco,et al.  Timing of water plume eruptions on Enceladus explained by interior viscosity structure , 2015 .

[89]  S. Weidenschilling,et al.  How fast do Galilean satellites spin , 1984 .

[90]  C. Murray,et al.  Dynamics of the Uranian and Saturnian satelite systems: A chaotic route to melting Miranda? , 1988 .

[91]  B. R. Tufts,et al.  Formation of cycloidal features on Europa. , 1999, Science.

[92]  E. Quataert,et al.  Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems , 2016, 1601.05804.

[93]  J. Anderson,et al.  Shape, Mean Radius, Gravity Field, and Interior Structure of Callisto , 2001 .

[94]  J. Connerney,et al.  The magnetic field of Neptune , 1991 .

[95]  J. Lunine,et al.  THE ROLE OF METHANOL IN THE CRYSTALLIZATION OF TITAN's PRIMORDIAL OCEAN , 2010 .

[96]  C. Sotin,et al.  Thermodynamic Properties of High Pressure Ices: Implications for the Dynamics and Internal Structure of Large Icy Satellites , 1998 .

[97]  E. Pierazzo,et al.  Thickness of a Europan Ice Shell from Impact Crater Simulations , 2001, Science.

[98]  P. Tackley,et al.  Stagnant lid convection in bottom‐heated thin 3‐D spherical shells: Influence of curvature and implications for dwarf planets and icy moons , 2014 .

[99]  Everett L. Shock,et al.  The oxidation state of hydrothermal systems on early Enceladus , 2008 .

[100]  H. Melosh,et al.  The temperature of Europa's subsurface water ocean , 2004 .

[101]  S. Ida,et al.  The influence of imperfect accretion and radial mixing on ice:rock ratios in the Galilean satellites , 2013 .

[102]  D. Gautier,et al.  TITAN'S BULK COMPOSITION CONSTRAINED BY CASSINI-HUYGENS: IMPLICATION FOR INTERNAL OUTGASSING , 2011 .

[103]  J. Wisdom,et al.  Tidal heating in Enceladus , 2007 .

[104]  J. Owen,et al.  Disruption and reaccretion of midsized moons during an outer solar system Late Heavy Bombardment , 2015 .

[105]  A. Trinh,et al.  On the librations and tides of large icy satellites , 2013 .

[106]  D. Campbell,et al.  Measurements of the spin states of Europa and Ganymede , 2013 .

[107]  Larry W. Esposito,et al.  Saturn from Cassini-Huygens , 2009 .

[108]  S. Peale Origin and evolution of the natural satellites , 1999 .

[109]  C. Sagan,et al.  The tide in the seas of Titan , 1982, Nature.

[110]  B. C. Edwards,et al.  Radar Detectability of a Subsurface Ocean on Europa , 1998 .

[111]  W. Schmitz,et al.  On the North Atlantic Circulation , 1993 .

[112]  M. Ross,et al.  The coupled orbital and thermal evolution of Triton , 1990 .

[113]  H. Zebker,et al.  A rigid and weathered ice shell on Titan , 2013, Nature.

[114]  Luciano Iess,et al.  Gravity Field, Shape, and Moment of Inertia of Titan , 2010, Science.

[115]  Paul D. Feldman,et al.  Transient Water Vapor at Europa’s South Pole , 2014, Science.

[116]  S. Fagents Considerations for effusive cryovolcanism on Europa: The post‐Galileo perspective , 2003 .

[117]  C. Chyba,et al.  Astrobiology: The Study of the Living Universe , 2005 .

[118]  M. Miesch,et al.  Anelastic convection-driven dynamo benchmarks , 2011 .

[119]  W. McKinnon Effect of Enceladus's rapid synchronous spin on interpretation of Cassini gravity , 2015 .

[120]  G. Neukum,et al.  Evidence for Europa‐like tectonic resurfacing styles on Ganymede , 2002 .

[121]  W. Ip,et al.  Liquid water on Enceladus from observations of ammonia and 40Ar in the plume , 2009, Nature.

[122]  David J. Stevenson,et al.  Nonhydrostatic effects and the determination of icy satellites' moment of inertia , 2013, 1309.1205.

[123]  Robert P. Lowell,et al.  Hydrothermal systems on Europa , 2003 .

[124]  M. Beuthe Spatial patterns of tidal heating , 2012, 1212.4630.

[125]  Erik Asphaug,et al.  Late origin of the Saturn system , 2013 .

[126]  F. Nimmo,et al.  Forced obliquity and moments of inertia of Titan , 2006 .

[127]  Gabriel Tobie,et al.  Titan's internal structure inferred from a coupled thermal-orbital model , 2005 .

[128]  P. Drossart,et al.  JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system , 2013 .

[129]  J. Lunine,et al.  26Al decay: Heat production and a revised age for Iapetus , 2009 .

[130]  H. Hussmann,et al.  Thermal Evolution of Europa's Silicate Interior , 2009 .

[131]  Shunichi Kamata,et al.  Tidal resonance in icy satellites with subsurface oceans , 2015 .

[132]  Ralph D. Lorenz,et al.  Tidal Dissipation on Titan , 1995 .

[133]  Michael E. Brown,et al.  The Compositions of Kuiper Belt Objects , 2011, 1112.2764.

[134]  P. Cassen,et al.  Is there liquid water on Europa , 1979 .

[135]  James Roberts,et al.  Sustainability of a subsurface ocean within Triton's interior , 2012 .

[136]  D. Prialnik,et al.  Modeling Kuiper belt objects Charon, Orcus and Salacia by means of a new equation of state for porous icy bodies , 2015 .

[137]  Kevin Zahnle,et al.  Cratering Rates in the Outer Solar System , 1999 .

[138]  David Senske,et al.  SCIENCE AND RECONNAISSANCE FROM THE EUROPA CLIPPER MISSION CONCEPT. R. Pappa , 2014 .

[139]  Jonathan L. Mitchell,et al.  Elastic ice shells of synchronous moons: Implications for cracks on Europa and non-synchronous rotation of Titan , 2009, 0910.0032.

[140]  K. Pang,et al.  The E ring of Saturn and satellite Enceladus , 1984 .

[141]  T. Lauer,et al.  The geology of Pluto and Charon through the eyes of New Horizons , 2016, Science.

[142]  Michael E. Brown,et al.  SPATIALLY RESOLVED SPECTROSCOPY OF EUROPA: THE DISTINCT SPECTRUM OF LARGE-SCALE CHAOS , 2015, 1510.07372.

[143]  Ö. Karatekin,et al.  Librational response of Europa, Ganymede, and Callisto with an ocean for a non-Keplerian orbit , 2011 .

[144]  James H. Roberts,et al.  The fluffy core of Enceladus , 2015 .

[145]  Gabriel Tobie,et al.  Enceladus's internal ocean and ice shell constrained from Cassini gravity, shape, and libration data , 2016 .

[146]  S. Vance,et al.  Layering and double-diffusion style convection in Europa's ocean , 2004 .

[147]  M. Kivelson,et al.  Subsurface Oceans on Europa and Callisto: Constraints from Galileo Magnetometer Observations , 2000 .

[148]  J. Kargel,et al.  The Volcanic and Tectonic History of Enceladus , 1996 .

[149]  G. Schubert,et al.  Tidal dissipation in a viscoelastic planet , 1986 .

[150]  W. Moore The Thermal State of Io , 2001 .

[151]  I. Matsuyama Tidal dissipation in the oceans of icy satellites , 2014 .

[152]  D. Stevenson,et al.  Gas-driven water volcanism and the resurfacing of Europa , 1985 .

[153]  C. M. Lisse,et al.  The Pluto system: Initial results from its exploration by New Horizons , 2015, Science.

[154]  M. E. Peters,et al.  Along-Track Focusing of Airborne Radar Sounding Data From West Antarctica for Improving Basal Reflection Analysis and Layer Detection , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[155]  M. E. Peters,et al.  Echo source discrimination in single-pass airborne radar sounding data from the Dry Valleys, Antarctica: Implications for orbital sounding of Mars , 2006 .

[156]  R. T. Pappalardo,et al.  Shear heating as the origin of the plumes and heat flux on Enceladus , 2007, Nature.

[157]  R. Greenberg,et al.  Eruptions arising from tidally controlled periodic openings of rifts on Enceladus , 2007, Nature.

[158]  M. Kivelson,et al.  The Permanent and Inductive Magnetic Moments of Ganymede , 2002 .

[159]  M. Manga,et al.  Pressurized oceans and the eruption of liquid water on Europa and Enceladus , 2007 .

[160]  T. Spohn,et al.  Thermal-orbital evolution of Io and Europa , 2004 .

[161]  Julie C. Castillo-Rogez,et al.  Evolution of Titan's rocky core constrained by Cassini observations , 2010 .

[162]  David E. Smith,et al.  The Origin of Lunar Mascon Basins , 2013, Science.

[163]  M. Choukroun,et al.  Thermodynamic data and modeling of the water and ammonia-water phase diagrams up to 2.2 GPa for planetary geophysics. , 2010, The Journal of chemical physics.

[164]  C. Sotin,et al.  The Thermal Evolution and Internal Structure of Saturn's Mid-Sized Icy Satellites , 2009 .

[165]  James Charles Granahan,et al.  Hydrated salt minerals on Europa's surface from the Galileo near‐infrared mapping spectrometer (NIMS) investigation , 1999 .

[166]  Shijie Zhong,et al.  The effects of laterally varying icy shell structure on the tidal response of Ganymede and Europa , 2014 .

[167]  J. Goodman,et al.  Numerical simulations of marine hydrothermal plumes for Europa and other icy worlds , 2012 .

[168]  L. Iess,et al.  The rotational dynamics of Titan from Cassini RADAR images , 2016 .

[169]  S. Charnoz,et al.  STRONG TIDAL DISSIPATION IN SATURN AND CONSTRAINTS ON ENCELADUS' THERMAL STATE FROM ASTROMETRY , 2012, 1204.0895.

[170]  David E. Smith,et al.  Tides on Europa, and the thickness of Europa's icy shell , 2006 .

[171]  K. P. Hand,et al.  Empirical constraints on the salinity of the europan ocean and implications for a thin ice shell , 2007 .

[172]  Roberto Orosei,et al.  Mars North Polar Deposits: Stratigraphy, Age, and Geodynamical Response , 2008, Science.

[173]  J. H. Roberts,et al.  Long-Term Stability of a Subsurface Ocean on Enceladus , 2007 .

[174]  F. Postberg,et al.  Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus , 2009, Nature.

[175]  R. Greeley,et al.  Episodic plate separation and fracture infill on the surface of Europa , 1998, Nature.

[176]  T. Hoolst,et al.  Titan’s internal structure inferred from its gravity field, shape, and rotation state , 2014 .

[177]  J. Burns,et al.  The Rotation of Janus and Epimetheus , 2009, 0904.3515.

[178]  Steven Soter,et al.  Q in the solar system , 1966 .

[179]  S. W. Asmar,et al.  The Gravity Field and Interior Structure of Enceladus , 2014, Science.

[180]  J. Fortney,et al.  The Interior Structure, Composition, and Evolution of Giant Planets , 2009, 0912.0533.

[181]  D. Stillman,et al.  Strain history of ice shells of the Galilean satellites from radar detection of crystal orientation fabric , 2011 .

[182]  B. Vermeersen,et al.  The forced libration of Europa’s deformable shell and its dependence on interior parameters , 2014 .

[183]  Late-stage impacts and the orbital and thermal evolution of Tethys , 2012 .

[184]  J. Delaney,et al.  Evidence for a weakly stratified Europan ocean sustained by seafloor heat flux , 2001 .

[185]  S. Charnoz,et al.  Constraints on Mimas’ interior from Cassini ISS libration measurements , 2014, Science.

[186]  W. McKinnon MYSTERY OF CALLISTO : IS IT UNDIFFERENTIATED ? , 1997 .