Microbially Induced Sedimentary Structures: A New Category within the Classification of Primary Sedimentary Structures

ABSTRACT Cyanobacterial films and mats syndepositonally influence erosion, deposition, and deformation of sediments. The biomass levels surface morphologies, and microbial mats stabilize depositional surfaces and shelter the sediment against erosion or degassing. Growing microbial mats dredge grains from their substrate upwards, whereas cyanobacterial filaments that are oriented perpendicular to the mat surface reach into the supernatant water and baffle, trap, and bind suspended particles. These and similar biotic-physical interactions are reflected in syndepositional formation of microbially induced sedimentary structures. We distinguish structures on bedding planes (leveled bedding surfaces, wrinkle structures, microbial mat chips, erosional remnants and pockets, multidirectional ripple marks, and mat curls) and internal bedding structures (sponge pore fabrics, gas domes, fenestrae structures, sinoidal laminae, oriented grains, benthic ooids, biolaminites, mat-layer-bound grain sizes). We propose to place this group of microbially mediated structures as a fifth category (bedding modified by microbial mats and biofilms) in Pettijohn and Potter's (1964) existing classification of primary sedimentary structures.

[1]  N. Noffke Extensive microbial mats and their influences on the erosional and depositional dynamics of a siliciclastic cold water environment (Lower Arenigian, Montagne Noire, France) , 2000 .

[2]  W. Krumbein,et al.  A quantitative approach to sedimentary surface structures contoured by the interplay of microbial colonization and physical dynamics , 1999 .

[3]  J. Schieber Possible indicators of microbial mat deposits in shales and sandstones: examples from the Mid-Proterozoic Belt Supergroup, Montana, U.S.A. , 1998 .

[4]  Giselher Gust,et al.  Prediction of coastal sediment stability from photopigment content of mats of purple sulphur bacteria , 1987, Nature.

[5]  H. Paerl,et al.  The role of microbes in accretion, lamination and early lithification of modern marine stromatolites , 2000, Nature.

[6]  R. J. Horodyski Impressions of algal mats from the Middle Proterozoic Belt Supergroup , 1982 .

[7]  J. Schieber The possible role of benthic microbial mats during the formation of carbonaceous shales in shallow Mid-Proterozoic basins , 1986 .

[8]  W. Krumbein,et al.  Evaporite Microbial Sediments , 2000 .

[9]  A. Gunatilaka Some aspects of the biology and sedimentology of laminated algal mats from mannar lagoon, Northwest Ceylon , 1975 .

[10]  Robert K. Park,et al.  A note on the significance of lamination in stromatolites , 1976 .

[11]  N. Noffke Multidirected ripple marks rising from biological and sedimentological processes in modern lower supratidal deposits (Mellum Island, southern North Sea) , 1998 .

[12]  W. Krumbein,et al.  Contribution of microbial mats to sedimentary surface structures , 1993 .

[13]  J. Jones,et al.  Modern Algal Mats in Intertidal and Supratidal Quartz Sands, Northeastern Massachusetts, U. S. A. , 1984 .

[14]  T. P. Scoffin,et al.  The composition, structure and erodability of subtidal mats, Abaco, Bahamas , 1970 .

[15]  A. R. Nowell,et al.  Effects of bacterial exopolymer adhesion on the entrainment of sand , 1990 .

[16]  D. Paterson Microbiological mediation of sediment structure and behaviour , 1994 .

[17]  J. Allen Wrinkle marks: An intertidal sedimentary structure due to aseismic soft-sediment loading , 1984 .

[18]  B. G. Rajulu,et al.  Algal Stromatolites from the Southwestern Part of the Kaladgi Basin, Lokapur, Mysore State, India , 1968 .

[19]  J. Schieber Microbial mats in terrigenous clastics; the challenge of identification in the rock record , 1999 .

[20]  R. Pickerill,et al.  Lithostratigraphy of the Cambrian – Lower Ordovician Saint John Group, southern New Brunswick , 1988 .

[21]  A. Decho,et al.  Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes , 1990 .

[22]  M. Black The Algal Sediments of Andros Island, Bahamas , 1932 .

[23]  L. Stal,et al.  Isolation and Characterization of Cyanobacteria from a Marine Microbial Mat , 1985 .

[24]  W. Krumbein,et al.  A microscopic sedimentary succession of graded sand and microbial mats in modern siliciclastic tidal flats , 1997 .

[25]  K. Black,et al.  Siliciclastic Intertidal Microbial Sediments , 2000 .

[26]  Wolfgang E. Krumbein,et al.  Stromatolites—the Challenge of a Term in Space and Time , 1983 .

[27]  E. Shinn,et al.  Mechanical and chemical compaction in fine-grained shallow-water limestones , 1983 .

[28]  P. D. Boer,et al.  Mechanical effects of micro-organisms on intertidal bedform migration * , 1981 .

[29]  B. W. Logan,et al.  Cryptozoon and Associate Stromatolites from the Recent, Shark Bay, Western Australia , 1961, The Journal of Geology.

[30]  Friedrich Pflueger Matground structures and redox facies , 1999 .

[31]  R. J. Dunham Classification of Carbonate Rocks According to Depositional Textures , 1962 .

[32]  D. Bottjer,et al.  Unexplored Microbial Worlds , 1999 .

[33]  N. Noffke,et al.  Microbial signatures in peritidal siliciclastic sediments: a catalogue , 2000 .

[34]  A. Knoll,et al.  Sedimentary Controls on the Formation and Preservation of Microbial Mats in Siliciclastic Deposits: A Case Study from the Upper Neoproterozoic Nama Group, Namibia , 2002 .

[35]  D. Bottjer,et al.  Restriction of a late Neoproterozoic biotope; suspect-microbial structures and trace fossils at the Vendian-Cambrian transition , 1999 .

[36]  P. Gresse,et al.  Microbial sand chips—a non-actualistic sedimentary structure , 1996 .

[37]  A. Decho Exopolymer Microdomains as a Structuring Agent for Heterogeneity Within Microbial Biofilms , 2000 .

[38]  Peter A. Wilderer,et al.  Structure and function of biofilms. , 1989 .

[39]  W. F. Tanner RIPPLE MARK INDICES AND THEIR USES , 1967 .

[40]  B. W. Logan,et al.  Classification and Environmental Significance of Algal Stromatolites , 1964, The Journal of Geology.

[41]  James W. Hagadorn,et al.  Wrinkle structures: Microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic-Phanerozoic transition , 1997 .

[42]  N. Noffke Erosional remnants and pockets evolving from biotic–physical interactions in a Recent lower supratidal environment , 1999 .

[43]  S. Pemberton,et al.  Trace fossil assemblages in a Middle Triassic mixed siliciclastic-carbonate marginal marine depositional system, British Columbia , 2001 .

[44]  C. D. Conley,et al.  Lithogenesis of a distinctive carbonate rock fabric , 1965 .

[45]  David M. Paterson,et al.  Biostabilization of Sediments , 1994 .

[46]  C. Kendall,et al.  Recent Algal Mats of a Persian Gulf Lagoon , 1968 .

[47]  W. Krumbein,et al.  Structural diversity of biogenic carbonate particles in microbial mats , 1994 .

[48]  W. Krumbein,et al.  Microbially induced sedimentary structures indicating climatological, Hydrological and depositional conditions within recent and pleistocene coastal facies zones (Southern Tunisia) , 2001 .

[49]  J. Stolz Structure of Microbial Mats and Biofilms , 2000 .

[50]  P. Brenchley,et al.  The role of wave reworking on the architecture of storm sandstone facies, Bell Island Group (Lower Ordovician), eastern Newfoundland , 1993 .

[51]  H. Reineck,et al.  Depositional sedimentary environments , 1973 .

[52]  H. Clifton,et al.  The ichnology of Modern and Pleistocene brackish-water deposits at Willapa Bay, Washington : Variability in estuarine settings , 1999 .