Co-limitation towards lower latitudes shapes global forest diversity gradients

M. Herold | B. Pijanowski | N. Picard | F. Rovero | A. Marshall | Jean‐François Bastin | T. Crowther | F. Kraxner | P. Reich | O. Phillips | E. Broadbent | A. Zambrano | P. Brancalion | G. Nabuurs | A. Shvidenko | J. Bogaert | A. Catlin | D. Gianelle | M. Lawes | J. Aguirre‐Gutiérrez | D. Coomes | S. Lewis | M. Bastian | F. Bongers | D. Harris | Emanuel H. Martin | L. Poorter | J. Poulsen | D. Sheil | T. Do | T. Baker | Jingyun Fang | Mait Lang | E. Cienciala | Jun Zhu | S. Vieira | H. Verbeeck | G. Aymard | F. Valladares | P. Ibisch | Carine Klauberg | G. Alberti | F. Wittmann | P. Boeckx | L. Finér | E. Bulte | M. Fischer | D. Kennard | T. Eyre | N. Imai | V. Avitabile | T. Zawila-Niedzwiecki | V. Johannsen | C. Antón-Fernández | V. Šebeň | K. von Gadow | Han Y. H. Chen | B. Schmid | F. Brearley | A. Hemp | C. Ewango | M. Swaine | C. Woodall | A. Vibrans | S. Wiser | S. Sundarapandian | H. Beeckman | T. de Haulleville | E. Kearsley | J. Vleminckx | C. Joly | B. DeVries | J. Oleksyn | J. Svenning | A. Paquette | D. Schepaschenko | Zhi-Xin Zhu | J. Schöngart | N. Targhetta | M. Rodeghiero | P. Schall | C. Ammer | K. Stereńczak | H. Pretzsch | J. A. Dar | P. Saikia | M. L. Khan | H. Bruelheide | M. Scherer‐Lorenzen | D. Vega-Nieva | P. M. López-Serrano | T. Jucker | L. Frizzera | J. Fridman | D. Piotto | R. Bałazy | M. Pollastrini | S. de-Miguel | J. Gamarra | Amit Kumar | C. Merow | M. Libalah | H. ter Steege | B. Jaroszewicz | F. van der Plas | N. Lukina | B. Westerlund | O. Bouriaud | P. Sist | J. Álvarez-González | Eric B. Searle | Jingjing Liang | B. Hérault | H. Glick | G. Hengeveld | S. Pfautsch | H. Viana | Nadja Tchebakova | Huicui Lu | E. Parfenova | H. S. Kim | Susanne Brandl | V. Neldner | M. Ngugi | A. Jagodziński | P. Peri | V. Wortel | S. Miścicki | J. Meave | E. Rutishauser | D. Jacobs | M. Svoboda | A. Lykke | R. Cazzolla Gatti | Mathieu Decuyper | Eric Marcon | N. Parthasarathy | T. Ibanez | R. César | A. L. de Gasper | Martin J. P. Sullivan | A. Cuni‐Sanchez | W. Hubau | K. Kartawinata | A. Poulsen | P. Umunay | Riccardo Valentini | S. Dayanandan | Jaime Briseño-Reyes | M. G. Nava-Miranda | G. Derroire | G. Keppel | J. Altman | J. Doležal | L. Alves | G. Sellan | V. Usoltsev | F. Slik | Aurélie Dourdain | M. Parren | S. Rolim | O. Hardy | G. Vaglio Laurin | M. Sainge | H. Korjus | Yannick Klomberg | G. Durrheim | Chunyu Zhang | Xiu-hai Zhao | S. A. Mukul | T. Fayle | A. Cuchietti | T. Ochuodho | R. Leite | O. Martynenko | A. Hillers | A. F. Souza | M. T. Mbuvi | Š. Janěcek | G. Colletta | V. Karminov | K. Sagheb‐Talebi | Catherine E. Waite | R. Tropek | Christian Salas‐Eljatib | M. Abegg | Faustin M. Mbayu | A. F. Azihou | Agustinus Murdjoko | Liam A. Trethowan | Relawan Kuswandi | C. Amani | I. C. Zo-Bi | A. Hector | Chelsea Chisholm | Minjee Park | N. Obiang | Akane O. Abbasi | J. Baard | Janvier Lisingo | L.E. Ndive | J. N. Kigomo | C. Wekesa | Lev Gorenstein | Vincent Maicher | Sylvain Delabye | Gérard Imani | Rodrigue Batumike | Blaise Jumbam | Hua‐Feng Wang | M. T. Piedade | N. M. H. Benu | M. Bauters | Subashree Kothandaraman | V. Moreno | F. Selvi | Yves C Adou Yao | J. Diisi | Lethicia Flavine N Feunang | M. Gonzalez-Elizondo | Richard Habonayo | Banoho L P R Kabelong | J. Kassi | A. Morera | Louis N Nforbelie | Michael L. Ngoh | A. S. K. Ngute | Emile Narcisse N Njila | M. Nyako | A. Salis | E. K. Wasingya | Xiao Zhu | Cang Hui | A. N’Guessan | Esteban Alvarez-Davila | Bhely Angoboy Ilondea | J. Mukendi | R. Bitariho | J. Serra-Diaz | J. Corral-Rivas | Brian Salvin Maitner | C. Silva | S. Kepfer‐Rojas | Mo Zhou | B. Amani | G. Kahsay | Jörg C Müller | Geoffrey Lentner | R. Nevenic

[1]  A. P. Williams,et al.  Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests , 2022, Nature Communications.

[2]  Towards open and transparent forest data for climate action: Experiences and lessons learned , 2022 .

[3]  Maria E. Kamenetsky,et al.  The number of tree species on Earth , 2022, Proceedings of the National Academy of Sciences.

[4]  F. Bongers,et al.  Functional diversity effects on productivity increase with age in a forest biodiversity experiment , 2021, Nature Ecology & Evolution.

[5]  Javier G. P. Gamarra,et al.  The importance of sharing global forest data in a world of crises , 2020, Scientific Data.

[6]  S. Higgins,et al.  Large uncertainties in future biome changes in Africa call for flexible climate adaptation strategies , 2020, Global change biology.

[7]  D. Tilman Resource Competition and Community Structure. (MPB-17), Volume 17 , 2020 .

[8]  Alejandro Ordonez,et al.  Species and phylogenetic endemism in angiosperm trees across the Northern Hemisphere are jointly shaped by modern climate and glacial–interglacial climate change , 2019, Global Ecology and Biogeography.

[9]  R. Lord Entomology , 2019, The American Biology Teacher.

[10]  N. Picard,et al.  Climatic controls of decomposition drive the global biogeography of forest-tree symbioses , 2019, Nature.

[11]  Susanne A. Fritz,et al.  The Latitudinal Diversity Gradient: Novel Understanding through Mechanistic Eco-evolutionary Models. , 2019, Trends in ecology & evolution.

[12]  O. Phillips,et al.  The persistence of carbon in the African forest understory , 2019, Nature Plants.

[13]  T. Pullaiah Global Biodiversity , 2018 .

[14]  Владимир Мясников,et al.  Development of Historical Science with the Support of the Russian Foundation for Humanities – the Russian Foundation for Basic Research , 2018, Russian Foundation for Basic Research Journal. Humanities and social sciences.

[15]  Alan Grainger,et al.  The extent of forest in dryland biomes , 2017, Science.

[16]  D. Storch,et al.  The enigma of terrestrial primary productivity: measurements, models, scales and the diversity–productivity relationship , 2017 .

[17]  J. Terborgh,et al.  Diversity and carbon storage across the tropical forest biome , 2017, Scientific Reports.

[18]  Filippo Bussotti,et al.  Positive biodiversity-productivity relationship predominant in global forests , 2016, Science.

[19]  Mark Vellend,et al.  The Theory of Ecological Communities (Mpb-57) , 2016 .

[20]  E. V. Nes,et al.  Bistability, Spatial Interaction, and the Distribution of Tropical Forests and Savannas , 2016, Ecosystems.

[21]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[22]  C. Bettigole,et al.  Mapping tree density at a global scale , 2015, Nature.

[23]  C. Pickering The Geographical Distribution of Animals and Plants , 2014 .

[24]  H. Kreft,et al.  Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. , 2014, Ecology letters.

[25]  James H. Brown Why are there so many species in the tropics? , 2013, Journal of biogeography.

[26]  C. Justice,et al.  High-Resolution Global Maps of 21st-Century Forest Cover Change , 2013, Science.

[27]  J. Pausas,et al.  Fire drives functional thresholds on the savanna-forest transition. , 2013, Ecology.

[28]  J. Chamberlain,et al.  Understanding the Relationships Between American Ginseng Harvest and Hardwood Forests Inventory and Timber Harvest to Improve Co-Management of the Forests of Eastern United States , 2013 .

[29]  Frédéric Achard,et al.  Continental estimates of forest cover and forest cover changes in the dry ecosystems of Africa between 1990 and 2000 , 2013, Journal of biogeography.

[30]  David Kenfack,et al.  Soil resources and topography shape local tree community structure in tropical forests , 2013, Proceedings of the Royal Society B: Biological Sciences.

[31]  Lindsay A. Turnbull,et al.  Identification of 100 fundamental ecological questions , 2013 .

[32]  H. Jactel,et al.  Unraveling plant-animal diversity relationships: a meta-regression analysis. , 2012, Ecology.

[33]  C. Fraser,et al.  Poleward bound: biological impacts of Southern Hemisphere glaciation. , 2012, Trends in ecology & evolution.

[34]  Gherardo Chirici,et al.  Assessing Forest Naturalness , 2012 .

[35]  R. McRoberts,et al.  Estimating tree species diversity across geographic scales , 2012, European Journal of Forest Research.

[36]  D. E. Farrar,et al.  Multicollinearity in Regression Analysis; the Problem Revisited , 2011 .

[37]  Helmut Hillebrand,et al.  Nutrient co-limitation of primary producer communities. , 2011, Ecology letters.

[38]  Pierre Legendre,et al.  Estimating and controlling for spatial structure in the study of ecological communities , 2010 .

[39]  B. Enquist,et al.  Advancing the metabolic theory of biodiversity. , 2009, Ecology letters.

[40]  Achim Zeileis,et al.  Conditional variable importance for random forests , 2008, BMC Bioinformatics.

[41]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[42]  Richard Field,et al.  Latitudinal Diversity Gradients , 2007 .

[43]  S. Ernest,et al.  Relationships between body size and abundance in ecology. , 2007, Trends in ecology & evolution.

[44]  Martin Zobel,et al.  Contrasting plant productivity-diversity relationships across latitude: the role of evolutionary history. , 2007, Ecology.

[45]  W. Jetz,et al.  Global patterns and determinants of vascular plant diversity , 2007, Proceedings of the National Academy of Sciences.

[46]  J. Kerr,et al.  A test of Metabolic Theory as the mechanism underlying broad-scale species-richness gradients , 2007 .

[47]  Rob J Hyndman,et al.  Another look at measures of forecast accuracy , 2006 .

[48]  P. Legendre,et al.  Variation partitioning of species data matrices: estimation and comparison of fractions. , 2006, Ecology.

[49]  Richard Field,et al.  Predictions and tests of climate‐based hypotheses of broad‐scale variation in taxonomic richness , 2004 .

[50]  Carsten Rahbek,et al.  The Mid‐Domain Effect and Species Richness Patterns:What Have We Learned So Far? , 2004, The American Naturalist.

[51]  Helmut Hillebrand,et al.  On the Generality of the Latitudinal Diversity Gradient , 2004, The American Naturalist.

[52]  Richard Field,et al.  ENERGY, WATER, AND BROAD‐SCALE GEOGRAPHIC PATTERNS OF SPECIES RICHNESS , 2003 .

[53]  Dawn M. Kaufman,et al.  LATITUDINAL GRADIENTS OF BIODIVERSITY:Pattern,Process,Scale,and Synthesis , 2003 .

[54]  James H. Brown,et al.  Global Biodiversity, Biochemical Kinetics, and the Energetic-Equivalence Rule , 2002, Science.

[55]  Stephen P. Hubbell,et al.  Species‐Area Curves, Diversity Indices, and Species Abundance Distributions: A Multifractal Analysis , 2002, The American Naturalist.

[56]  E. Dinerstein,et al.  The Global 200: Priority ecoregions for global conservation , 2002 .

[57]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[58]  Robert K. Colwell,et al.  Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness , 2001 .

[59]  J. Crame,et al.  Taxonomic diversity gradients through geological time , 2001 .

[60]  E. Wilson A global biodiversity map. , 2000, Science.

[61]  R. Ricklefs,et al.  Large-scale processes and the Asian bias in species diversity of temperate plants , 2000, Nature.

[62]  K. Gaston Global patterns in biodiversity , 2000, Nature.

[63]  B. Ripley,et al.  Modern Applied Statistics with S-Plus. , 1996 .

[64]  P. Legendre,et al.  On Species-Area Relations , 1996, The American Naturalist.

[65]  David A. James Modern Applied Statistics With S-PLUS , 1994 .

[66]  P. Legendre Spatial Autocorrelation: Trouble or New Paradigm? , 1993 .

[67]  David H. Wright,et al.  Species-energy theory: an extension of species-area theory , 1983 .

[68]  Earl D. McCoy,et al.  The Statistics and Biology of the Species-Area Relationship , 1979, The American Naturalist.

[69]  R. Joynt Department , 1960, Neurology.

[70]  J. Seeley,et al.  ‘It is like a tomato stall where someone can pick what he likes’: structure and practices of female sex work in Kampala, Uganda , 2013, BMC Public Health.

[71]  V Kishore Ayyadevara,et al.  Gradient Boosting Machine , 2018 .

[72]  K. Macdicken,et al.  Global Forest Resources Assessment 2015: how are the world's forests changing? , 2015 .

[73]  M. Rossini,et al.  Measuring sun-induced chlorophyll fluorescence: an evaluation and synthesis of existing field data , 2014 .

[74]  R. Poonguzhalan,et al.  IN PUDUCHERRY, INDIA , 2013 .

[75]  Gherardo Chirici,et al.  National forest inventories : contributions to forest biodiversity assessments , 2011 .

[76]  E. Tomppo National Forest Inventories : pathways for common reporting , 2010 .

[77]  L. Breiman Random Forests , 2001, Machine Learning.

[78]  Christopher B. Field,et al.  Plant Responses to Multiple Environmental FactorsPhysiological ecology provides tools for studying how interacting environmental resources control plant growth , 1987 .

[79]  Jeffrey Q. Chambers,et al.  TROPICAL FORESTS : AN EVALUATION AND SYNTHESIS OF EXISTING FIELD DATA , 2022 .

[80]  *Centre de Coopération internationale en Recherche agronomique pour le Développement , 2022 .