Accuracy Assessment for Classification and Modeling

[1]  Giles M. Foody,et al.  Harshness in image classification accuracy assessment , 2008 .

[2]  M. Harmon,et al.  Total carbon stocks in a tropical forest landscape of the Porce region, Colombia , 2007 .

[3]  Alan B. Anderson,et al.  Mapping and uncertainty of predictions based on multiple primary variables from joint co-simulation with Landsat TM image and polynomial regression , 2002 .

[4]  Guangxing Wang,et al.  Uncertainty Analysis of Predicted Disturbance from Off-Road Vehicular Traffic in Complex Landscapes at Fort Hood , 2002, Environmental management.

[5]  R. Pontius QUANTIFICATION ERROR VERSUS LOCATION ERROR IN COMPARISON OF CATEGORICAL MAPS , 2000 .

[6]  George Z. Gertner,et al.  Uncertainty and sensitivity analysis for models with correlated parameters , 2008, Reliab. Eng. Syst. Saf..

[7]  Shoufan Fang,et al.  Estimation of sensitivity coefficients of nonlinear model input parameters which have a multinormal distribution , 2004 .

[8]  Robert Gilmore Pontius,et al.  A generalized cross‐tabulation matrix to compare soft‐classified maps at multiple resolutions , 2006, Int. J. Geogr. Inf. Sci..

[9]  J. V. Soares,et al.  Distribution of aboveground live biomass in the Amazon basin , 2007 .

[10]  Richard A. Birdsey,et al.  Toward error analysis of large-scale forest carbon budgets , 2000 .

[11]  H Christopher Frey,et al.  Comparison of Sensitivity Analysis Methods Based on Applications to a Food Safety Risk Assessment Model , 2004, Risk analysis : an official publication of the Society for Risk Analysis.

[12]  J. C. Helton,et al.  An Investigation of Uncertainty and Sensitivity Analysis Techniques for Computer Models , 1988 .

[13]  Guangxing Wang,et al.  Mapping Multiple Variables for Predicting Soil Loss by Geostatistical Methods with TM Images and a Slope Map , 2003 .

[14]  Guangxing Wang,et al.  A Methodology for Spatial Uncertainty Analysis Of Remote Sensing and GIS Products , 2005 .

[15]  R. Congalton Accuracy assessment and validation of remotely sensed and other spatial information , 2001 .

[16]  Sarah Parks,et al.  An effective assessment protocol for continuous geospatial datasets of forest characteristics using USFS Forest Inventory and Analysis (FIA) data , 2010 .

[17]  Tonny J. Oyana,et al.  Mapping and spatial uncertainty analysis of forest vegetation carbon by combining national forest inventory data and satellite images , 2009 .

[18]  Giles M. Foody,et al.  Status of land cover classification accuracy assessment , 2002 .

[19]  Gregory P. Asner,et al.  Controls over aboveground forest carbon density on Barro Colorado Island, Panama , 2010 .

[20]  Daniel A. Griffith,et al.  Error Propagation Modelling in Raster GIS: Overlay Operations , 1998, Int. J. Geogr. Inf. Sci..

[21]  P. Reed,et al.  Hydrology and Earth System Sciences Discussions Comparing Sensitivity Analysis Methods to Advance Lumped Watershed Model Identification and Evaluation , 2022 .

[22]  Tonny J. Oyana,et al.  Uncertainties of mapping aboveground forest carbon due to plot locations using national forest inventory plot and remotely sensed data , 2011 .

[23]  M. Jansen Analysis of variance designs for model output , 1999 .

[24]  George Z. Gertner,et al.  A general first-order global sensitivity analysis method , 2008, Reliab. Eng. Syst. Saf..

[25]  Raymond L. Czaplewski,et al.  Misclassification Bias in Areal Estimates , 1992 .

[26]  Roland L. Redmond,et al.  Estimation and Mapping of Misclassification Probabilities for Thematic Land Cover Maps , 1998 .

[27]  Patrick M. Reed,et al.  Advancing the identification and evaluation of distributed rainfall‐runoff models using global sensitivity analysis , 2007 .

[28]  Oleg Chertov,et al.  Uncertainty analysis in carbon cycle models of forest ecosystems: Research needs and development of a theoretical framework to estimate error propagation , 2008 .

[29]  Qiming Zhou,et al.  Accuracy assessment on multi‐temporal land‐cover change detection using a trajectory error matrix , 2009 .

[30]  Alan B. Anderson,et al.  Improved generalized Fourier amplitude sensitivity test (FAST) for model assessment , 2003, Stat. Comput..

[31]  S. Carpenter,et al.  Global Consequences of Land Use , 2005, Science.

[32]  M. Nilsson,et al.  Combining national forest inventory field plots and remote sensing data for forest databases , 2008 .

[33]  Janne Heiskanen,et al.  Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data , 2005 .

[34]  C. Willmott Some Comments on the Evaluation of Model Performance , 1982 .

[35]  R. Congalton,et al.  Accuracy assessment: a user's perspective , 1986 .

[36]  S. Hubbell,et al.  Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama , 2003 .

[37]  David Saah,et al.  Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates , 2012 .

[38]  L.L.F. Janssen,et al.  Accuracy assessment of satellite derived land - cover data : a review , 1994 .

[39]  Stephen V. Stehman,et al.  Statistical Rigor and Practical Utility in Thematic Map Accuracy Assessment , 2001 .

[40]  George Z. Gertner,et al.  Extending a global sensitivity analysis technique to models with correlated parameters , 2007, Comput. Stat. Data Anal..

[41]  George Gertner,et al.  Simulating Spatial Pattern and Dynamics of Military Training Impacts for Allocation of Land Repair Using Images , 2009, Environmental management.

[42]  Linda S. Heath,et al.  An assessment of uncertainty in forest carbon budget projections , 2000 .

[43]  Stefano Tarantola,et al.  Random balance designs for the estimation of first order global sensitivity indices , 2006, Reliab. Eng. Syst. Saf..

[44]  Guangxing Wang,et al.  Spatial uncertainty analysis for mapping soil erodibility based on joint sequential simulation , 2003 .

[45]  G. Foody,et al.  Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions , 2003 .

[46]  George Z. Gertner,et al.  A quality assessment of a Weibull based growth projection system , 1995 .

[47]  Giles M. Foody,et al.  Assessing the ground data requirements for regional scale remote sensing of tropical forest biophysical properties , 2000 .

[48]  M. Keller,et al.  Biomass estimation in the Tapajos National Forest, Brazil: Examination of sampling and allometric uncertainties , 2001 .

[49]  G. Asner,et al.  Evaluating uncertainty in mapping forest carbon with airborne LiDAR , 2011 .

[50]  L. Ji,et al.  An Agreement Coefficient for Image Comparison , 2006 .

[51]  P. Mielke The application of multivariate permutation methods based on distance functions in the earth sciences , 1991 .

[52]  Jon C. Helton,et al.  Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal , 1993 .

[53]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[54]  G. Foody Monitoring the magnitude of land-cover change around the southern limits of the Sahara , 2001 .

[55]  G. Asner,et al.  Environmental and Biotic Controls over Aboveground Biomass Throughout a Tropical Rain Forest , 2009, Ecosystems.

[56]  Limin Yang,et al.  Urban Land-Cover Change Detection through Sub-Pixel Imperviousness Mapping Using Remotely Sensed Data , 2003 .

[57]  Guangxing Wang,et al.  Improvement in mapping vegetation cover factor for the universal soil loss equation by geostatistical methods with Landsat Thematic Mapper images , 2002 .

[58]  Stephen V. Stehman,et al.  A Critical Evaluation of the Normalized Error Matrix in Map Accuracy Assessment , 2004 .

[59]  Wenzhong Shi,et al.  A stochastic process-based model for the positional error of line segments in GIS , 2000, Int. J. Geogr. Inf. Sci..

[60]  C. Willmott ON THE VALIDATION OF MODELS , 1981 .

[61]  Alan B. Anderson,et al.  Spatial uncertainty in prediction of the topographical factor for the revised universal soil loss equation (RUSLE) , 2002 .

[62]  Michael A. Wulder,et al.  Remote sensing methods in medium spatial resolution satellite data land cover classification of large areas , 2002 .

[63]  B. van Putten,et al.  Comparison of uncertainties in carbon sequestration estimates for a tropical and a temperate forest , 2008 .

[64]  R. G. Pontius Statistical Methods to Partition Effects of Quantity and Location During Comparison of Categorical Maps at Multiple Resolutions , 2002 .

[65]  Robert Gilmore Pontius,et al.  Range of Categorical Associations for Comparison of Maps with Mixed Pixels , 2009 .

[66]  Michael A. Wulder,et al.  An accuracy assessment framework for large‐area land cover classification products derived from medium‐resolution satellite data , 2006 .

[67]  Stefano Tarantola,et al.  Sensitivity analysis of spatial models , 2009, Int. J. Geogr. Inf. Sci..

[68]  J. Wickham,et al.  Thematic accuracy of the 1992 National Land-Cover Data for the eastern United States: Statistical methodology and regional results , 2003 .

[69]  Russell G. Congalton,et al.  Mapping and Monitoring Agricultural Crops and Other Land Cover in the Lower Colorado River Basin , 1998 .

[70]  Gerard B. M. Heuvelink,et al.  Error Propagation in Cartographic Modelling Using Boolean Logic and Continuous Classification , 1993, Int. J. Geogr. Inf. Sci..

[71]  Paul D. Bates,et al.  Distributed Sensitivity Analysis of Flood Inundation Model Calibration , 2005 .

[72]  Janet L. Ohmann,et al.  Predictive mapping of forest composition and structure with direct gradient analysis and nearest- neighbor imputation in coastal Oregon, U.S.A. , 2002 .

[73]  D. Lu The potential and challenge of remote sensing‐based biomass estimation , 2006 .

[74]  Frédéric Baret,et al.  Developments in the 'validation' of satellite sensor products for the study of the land surface , 2000 .

[75]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[76]  Stefano Tarantola,et al.  Uncertainty and sensitivity analysis: tools for GIS-based model implementation , 2001, Int. J. Geogr. Inf. Sci..

[77]  M. Lefsky,et al.  Forest carbon densities and uncertainties from Lidar, QuickBird, and field measurements in California , 2010 .

[78]  D. Roberts,et al.  Sources of error in accuracy assessment of thematic land-cover maps in the Brazilian Amazon , 2004 .

[79]  Giles M. Foody,et al.  On the compensation for chance agreement in image classification accuracy assessment, Photogram , 1992 .

[80]  K. Shuler,et al.  Nonlinear sensitivity analysis of multiparameter model systems , 1977 .

[81]  Alan B. Anderson,et al.  Assessing and predicting changes in vegetation cover associated with military land use activities using field monitoring data at Fort Hood, Texas , 2005 .

[82]  Richard Condit,et al.  Error propagation and scaling for tropical forest biomass estimates. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[83]  Javier Montero,et al.  Accuracy statistics for judging soft classification , 2008 .

[84]  C. Homer,et al.  Updating the 2001 National Land Cover Database Impervious Surface Products to 2006 using Landsat Imagery Change Detection Methods , 2010 .

[85]  David E. Knapp,et al.  High-resolution carbon mapping on the million-hectare Island of Hawaii , 2011 .

[86]  Gerard B. M. Heuvelink,et al.  Propagation of errors in spatial modelling with GIS , 1989, Int. J. Geogr. Inf. Sci..

[87]  George Z. Gertner,et al.  Understanding and comparisons of different sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST) , 2011, Comput. Stat. Data Anal..

[88]  A. Saltelli,et al.  Making best use of model evaluations to compute sensitivity indices , 2002 .

[89]  J. Scepan,et al.  Thematic validation of high-resolution Global Land-Cover Data sets , 1999 .

[90]  Giles M. Foody,et al.  Mapping the biomass of Bornean tropical rain forest from remotely sensed data , 2001 .

[91]  Roni Avissar,et al.  An Evaluation with the Fourier Amplitude Sensitivity Test (FAST) of Which Land-Surface Parameters Are of Greatest Importance in Atmospheric Modeling , 1994 .

[92]  Andrea Saltelli,et al.  An effective screening design for sensitivity analysis of large models , 2007, Environ. Model. Softw..

[93]  Philip B Woodford,et al.  Spatial variability and temporal dynamics analysis of soil erosion due to military land use activities: uncertainty and implications for land management , 2007 .

[94]  Alan B. Anderson,et al.  Mapping vegetation cover change using geostatistical methods and bitemporal Landsat TM images , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[95]  Weldon A. Lodwick,et al.  Attribute error and sensitivity analysis of map operations in geographical informations systems: suitability analysis , 1990, Int. J. Geogr. Inf. Sci..

[96]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[97]  Chonggang Xu,et al.  Uncertainties in the response of a forest landscape to global climatic change , 2009 .

[98]  W. Cohen,et al.  Landsat's Role in Ecological Applications of Remote Sensing , 2004 .

[99]  Stephen V. Stehman,et al.  Design and Analysis for Thematic Map Accuracy Assessment: Fundamental Principles , 1998 .

[100]  G. Powell,et al.  High-resolution forest carbon stocks and emissions in the Amazon , 2010, Proceedings of the National Academy of Sciences.

[101]  Philip A. Townsend,et al.  A Quantitative Fuzzy Approach to Assess Mapped Vegetation Classifications for Ecological Applications , 2000 .

[102]  C. Fortuin,et al.  Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory , 1973 .

[103]  Nathan P. Gillett,et al.  Natural and anthropogenic climate change: incorporating historical land cover change, vegetation dynamics and the global carbon cycle , 2004 .

[104]  A. Saltelli,et al.  A quantitative model-independent method for global sensitivity analysis of model output , 1999 .