Best Basis Selection for Approximation in Lp

Abstract. We study the approximation of a function class F in Lp by choosing first a basis B and then using n -term approximation with the elements of B . Into the competition for best bases we enter all greedy (i.e., democratic and unconditional [20]) bases for Lp . We show that if the function class F is well-oriented with respect to a particular basis B then, in a certain sense, this basis is the best choice for this type of approximation. Our results extend the recent results of Donoho [9] from L2 to Lp , p\neq 2 .

[1]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[2]  R. Gribonval,et al.  Some remarks on non-linear approximation with Schauder bases , 2001 .

[3]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[4]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[5]  Ronald A. DeVore,et al.  Besov spaces on domains in , 1993 .

[6]  Stephen J. Dilworth,et al.  The Thresholding Greedy Algorithm, Greedy Bases, and Duality , 2003 .

[7]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[8]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..

[9]  R. DeVore,et al.  Restricted Nonlinear Approximation , 2000 .

[10]  D. Donoho Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation , 1993 .

[11]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[12]  Joram Lindenstrauss,et al.  Classical Banach spaces , 1973 .

[13]  J. Peetre On theory of interpolation spaces , 1967 .

[14]  R. DeVore,et al.  Compression of wavelet decompositions , 1992 .

[15]  Vladimir Temlyakov Nonlinear Kolmogorov widths , 1998 .

[16]  Vladimir N. Temlyakov,et al.  The best m-term approximation and greedy algorithms , 1998, Adv. Comput. Math..

[17]  R. DeVore,et al.  Interpolation of Besov-Spaces , 1988 .

[18]  B. Carl Entropy numbers, s-numbers, and eigenvalue problems , 1981 .

[19]  Gerard Kerkyacharian,et al.  Entropy, Universal Coding, Approximation, and Bases Properties , 2003 .

[20]  R. DeVore,et al.  Nonlinear Approximation by Trigonometric Sums , 1995 .

[21]  R. DeVore,et al.  BESOV SPACES ON DOMAINS IN Rd , 1993 .

[22]  G. Lorentz,et al.  Constructive approximation : advanced problems , 1996 .

[23]  Ronald A. DeVore,et al.  Image compression through wavelet transform coding , 1992, IEEE Trans. Inf. Theory.

[24]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..