Proximity effect, Andreev reflections, and charge transport in mesoscopic superconducting/semiconducting heterostructures

Abstract In the quasi-two-dimensional (Q2D) electron gas of an InAs channel between an AlSb substrate and superconducting niobium layers, the proximity effect induces a pair potential so that a Q2D mesoscopic superconducting/normal/superconducting (SNS) junction forms in the channel. The pair potential is calculated with quasiclassical Green’s functions in the clean limit. For such a junction, alternating Josephson currents and current–voltage characteristics (CVCs) are computed, using the nonequilibrium quasiparticle wavefunctions which solve the time-dependent Bogoliubov–de Gennes equations. The CVCs exhibit features found experimentally by the Kroemer group: a steep rise of the current at small voltages (‘foot’) changes at a ‘corner current’ to a much slower increase of current with higher voltages, and the zero-bias differential resistance increases with temperature. Phase-coherent multiple Andreev reflections and the associated Cooper pair transfers are the physical mechanisms responsible for the oscillating Josephson currents and the CVCs. Additional experimental findings not reproduced by the theory require model improvements, especially a consideration of the external current leads which should give rise to hybrid quasiparticle/collective-mode excitations.

[1]  J. Niemeyer,et al.  Quasiparticle Interference Effects in a Ballistic Superconductor-Semiconductor-Superconductor Josephson Junction , 1998 .

[2]  H. Kroemer,et al.  Current-voltage characteristics of semiconductor-coupled superconducting weak links with large electrode separations , 1998, cond-mat/9806293.

[3]  K. S. Aleksandrov,et al.  Critical currents in bulk composites , 1997 .

[4]  V. Shumeiko,et al.  DC-CURRENT TRANSPORT AND AC JOSEPHSON EFFECT IN QUANTUM JUNCTIONS AT LOW VOLTAGE , 1997 .

[5]  K. S. Aleksandrov,et al.  Transport properties of high-temperature superconductor + semiconductor composites with different carrier concentration , 1997 .

[6]  T. Matsuyama,et al.  EVIDENCE FOR A PROXIMITY-INDUCED ENERGY GAP IN NB/INAS/NB JUNCTIONS , 1997 .

[7]  T. Matsuyama,et al.  Anomalous subharmonic gap structure in mesoscopic Nb/InAs/Nb contacts , 1996 .

[8]  Golubov,et al.  Quasiparticle current in ballistic constrictions with finite transparencies of interfaces. , 1996, Physical review. B, Condensed matter.

[9]  T. Matsui,et al.  Mixer of short weak link using a resonance effect due to multiple Andreev reflections at subgap voltages , 1995, IEEE Transactions on Applied Superconductivity.

[10]  D. Averin,et al.  ac Josephson Effect in a Single Quantum Channel. , 1995, Physical review letters.

[11]  H. Kroemer,et al.  Quasiparticle transport and induced superconductivity in InAs-AlSb quantum wells with Nb electrodes , 1994 .

[12]  T. Klapwijk,et al.  Proximity and Josephson effects in superconductor-two-dimensional electron gas planar junctions , 1994, cond-mat/9411088.

[13]  Zaikin,et al.  Ballistic charge transport in superconducting weak links. , 1994, Physical review. B, Condensed matter.

[14]  Wacker,et al.  Electronic structure of superconducting multilayers. , 1994, Physical review. B, Condensed matter.

[15]  H. Kroemer,et al.  Electronic interactions at superconductor-semiconductor interfaces , 1994 .

[16]  Kümmel,et al.  Symmetry breaking, off-diagonal scattering, and Josephson currents in mesoscopic weak links. , 1994, Physical review. B, Condensed matter.

[17]  Takayanagi,et al.  Magnetic-field dependence of Andreev reflection in a clean Nb-InAs-Nb junction. , 1994, Physical review. B, Condensed matter.

[18]  T. M. Klapwijk,et al.  SINGLE-ELECTRON TUNNELING AND MESOSCOPIC DEVICES , 1993 .

[19]  H. Koch,et al.  Single-Electron Tunneling and Mesoscopic Devices , 1992 .

[20]  Kümmel,et al.  Andreev scattering of quasiparticle wave packets and current-voltage characteristics of superconducting metallic weak links. , 1990, Physical review. B, Condensed matter.

[21]  Bruder Andreev scattering in anisotropic superconductors. , 1990, Physical review. B, Condensed matter.

[22]  Kieselmann Self-consistent calculations of the pair potential and the tunneling density of states in proximity contacts. , 1987, Physical review. B, Condensed matter.

[23]  R. Kümmel,et al.  Andreev-reflected wave packets in voltage-biased superconducting quantum wells , 1985 .

[24]  Kawakami,et al.  Superconducting proximity effect in the native inversion layer on InAs. , 1985, Physical review letters.

[25]  T. M. Klapwijk,et al.  Subharmonic energy-gap structure in superconducting constrictions , 1983 .

[26]  T. M. Klapwijk,et al.  Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion , 1982 .

[27]  W. N. Mathews Quasiparticle, charge, and energy conservation in weak‐coupling superconductors , 1978 .

[28]  R. Kümmel Quasiparticle scattering and current-voltage characteristics of superconductor-normal-superconductor film structures , 1977 .

[29]  R. Kümmel Dynamics of current flow through the phase-boundary between a normal and a superconducting region , 1969 .

[30]  W. L. Mcmillan THEORY OF SUPERCONDUCTOR--NORMAL-METAL INTERFACES. , 1968 .

[31]  J. Collet Solid-State Electronics , 1963, Nature.

[32]  Cěskoslovenská akademie věd. Czechoslovak journal of physics. B , 1961 .

[33]  Československá akademie věd Czechoslovak journal of physics = Чехословацкий физический журнал , 1952 .