Hierarchic Genetic Strategy with maturing as a generic tool for Multiobjective Optimization

Abstract In this paper we introduce the Multiobjective Optimization Hierarchic Genetic Strategy with maturing (MO-mHGS), a meta-algorithm that performs evolutionary optimization in a hierarchy of populations. The maturing mechanism improves growth and reduces redundancy. The performance of MO-mHGS with selected state-of-the-art multiobjective evolutionary algorithms as internal algorithms is analysed on benchmark problems and their modifications for which single fitness evaluation time depends on the solution accuracy. We compare the proposed algorithm with the Island Model Genetic Algorithm as well as with single-deme methods, and discuss the impact of internal algorithms on the MO-mHGS meta-algorithm.

[1]  Robert Schaefer,et al.  Clustered genetic search in continuous landscape exploration , 2004, Eng. Appl. Artif. Intell..

[2]  Robert Schaefer,et al.  Genetic Search Reinforced by the Population Hierarchy , 2002, FOGA.

[3]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[4]  Carlos A. Coello Coello,et al.  Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and epsilon-Dominance , 2005, EMO.

[5]  Robert Schaefer,et al.  A hybrid method for inversion of 3D DC resistivity logging measurements , 2014, Natural Computing.

[6]  Xianpeng Wang,et al.  A Hybrid Multiobjective Evolutionary Algorithm for Multiobjective Optimization Problems , 2013, IEEE Transactions on Evolutionary Computation.

[7]  James P. Cohoon,et al.  C6.3 Island (migration) models: evolutionary algorithms based on punctuated equilibria , 1997 .

[8]  Jason R. Schott Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. , 1995 .

[9]  Robert Schaefer,et al.  Efficient Adaptive Strategy for Solving Inverse Problems , 2007, International Conference on Computational Science.

[10]  Qingfu Zhang,et al.  Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition , 2009 .

[11]  D.A. Van Veldhuizen,et al.  On measuring multiobjective evolutionary algorithm performance , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[12]  Carlos A. Coello Coello,et al.  Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[13]  Victor M. Calo,et al.  hp-HGS strategy for inverse AC/DC resistivity logging measurement simulations , 2013, Comput. Sci..

[14]  Kay Chen Tan,et al.  Adaptive Memetic Computing for Evolutionary Multiobjective Optimization , 2015, IEEE Transactions on Cybernetics.

[15]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[16]  Robert Schaefer,et al.  Multi-objective Hierarchic Memetic Solver for Inverse Parametric Problems , 2015, ICCS.

[17]  Kalyanmoy Deb,et al.  A dual-population paradigm for evolutionary multiobjective optimization , 2015, Inf. Sci..

[18]  Carlos A. Coello Coello,et al.  Solving Multiobjective Optimization Problems Using an Artificial Immune System , 2005, Genetic Programming and Evolvable Machines.

[19]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[20]  Carlos M. Fonseca,et al.  An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[21]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[22]  Ye Tian,et al.  An Efficient Approach to Nondominated Sorting for Evolutionary Multiobjective Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[23]  Ewa Gajda-Zagórska,et al.  Multiobjective evolutionary strategy for finding neighbourhoods of pareto-optimal solutions , 2013 .

[24]  Wenhua Zeng,et al.  A New Local Search-Based Multiobjective Optimization Algorithm , 2015, IEEE Transactions on Evolutionary Computation.

[25]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[26]  Robert Schaefer,et al.  Evolutionary Multiobjective Optimization Algorithm as a Markov System , 2010, PPSN.

[27]  Meng-Sing Liou,et al.  Adaptive directional local search strategy for hybrid evolutionary multiobjective optimization , 2014, Appl. Soft Comput..

[28]  Leszek Siwik,et al.  Hierarchical Approach to Evolutionary Multi-Objective Optimization , 2008, ICCS.

[29]  Kay Chen Tan,et al.  A Competitive-Cooperative Coevolutionary Paradigm for Dynamic Multiobjective Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[30]  Hua Xu,et al.  An improved NSGA-III procedure for evolutionary many-objective optimization , 2014, GECCO.

[31]  Shiu Yin Yuen,et al.  A Multiobjective Evolutionary Algorithm That Diversifies Population by Its Density , 2012, IEEE Transactions on Evolutionary Computation.

[32]  Kay Chen Tan,et al.  An Energy-Based Sampling Technique for Multi-Objective Restricted Boltzmann Machine , 2013, IEEE Transactions on Evolutionary Computation.

[33]  Hong Li,et al.  A modification to MOEA/D-DE for multiobjective optimization problems with complicated Pareto sets , 2012, Inf. Sci..

[34]  Kim-Fung Man,et al.  Learning paradigm based on jumping genes: A general framework for enhancing exploration in evolutionary multiobjective optimization , 2013, Inf. Sci..

[35]  Shengxiang Yang,et al.  Evolutionary Algorithms With Segment-Based Search for Multiobjective Optimization Problems , 2014, IEEE Transactions on Cybernetics.

[36]  C H Wolters,et al.  Accuracy and run-time comparison for different potential approaches and iterative solvers in finite element method based EEG source analysis. , 2009, Applied numerical mathematics : transactions of IMACS.

[37]  Chih-Hao Lin,et al.  Improving the non-dominated sorting genetic algorithm using a gene-therapy method for multi-objective optimization , 2014, J. Comput. Sci..

[38]  Concha Bielza,et al.  Multiobjective Estimation of Distribution Algorithm Based on Joint Modeling of Objectives and Variables , 2014, IEEE Transactions on Evolutionary Computation.

[39]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.