Enantioselective separation of chiral arylcarboxylic acids on an immobilized human serum albumin chiral stationary phase.

A series of 12 chiral arylcarboxylic acids were chromatographed on an immobilized human serum albumin chiral stationary phase (HSA-CSP). The effects of solute structure on chromatographic retentions and enantioselective separations were examined by linear regression analysis and the construction of quantitative structure-enantioselective retention relationships. Competitive displacement studies were also conducted using R-ibuprofen as the displacing agent. The results indicate that the enantioselective retention of the solutes takes place at the indole-benzodiazepine site (site II) on the HSA molecule and that chiral recognition is affected by the hydrophobicity and steric volume of the solutes. The displacement studies also identified a cooperative allosteric interaction induced by the binding of R-ibuprofen to site II.

[1]  I. Wainer,et al.  Mechanistic investigation into the enantioselective separation of mexiletine and related compounds, chromatographed on an amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase , 1996 .

[2]  I. Wainer,et al.  Investigation of the enantioselective separations of α-alkylarylcarboxylic acids on an amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase using quantitative structure-enantioselective retention relationships Identification of a conformationally driven chiral recognition mechanism , 1996 .

[3]  R. Kaliszan,et al.  Quantitative structure-retention relationships in the examination of the topography of the binding site of antihistamine drugs on alpha 1-acid glycoprotein. , 1996, Journal of chromatography. A.

[4]  D. S. Hage,et al.  Characterization of the protein binding of chiral drugs by high-performance affinity chromatography. Interactions of R- and S-ibuprofen with human serum albumin. , 1995, Journal of chromatography. A.

[5]  I. Wainer,et al.  Stereochemical aspects of benzodiazepine binding to human serum albumin. II. Quantitative relationships between structure and enantioselective retention in high performance liquid affinity chromatography. , 1992, Molecular pharmacology.

[6]  D. S. Hage,et al.  Allosteric and competitive displacement of drugs from human serum albumin by octanoic acid, as revealed by high-performance liquid affinity chromatography, on a human serum albumin-based stationary phase. , 1992, Journal of chromatography.

[7]  Roman Kaliszan,et al.  Quantitative structure-enationselective retention relationships for the chromatography of 1,4-benzodiazepines on a human serum albumin based HPLC chiral stationary phase: An approach to the computational prediction of retention and enantioselectivity , 1992 .

[8]  P Salvadori,et al.  Use of a human serum albumin-based high-performance liquid chromatography chiral stationary phase for the investigation of protein binding: detection of the allosteric interaction between warfarin and benzodiazepine binding sites. , 1991, Journal of pharmaceutical sciences.

[9]  I. Wainer,et al.  Stereochemical resolution of enantiomeric 2-aryl propionic acid non-steroidal anti-inflammatory drugs on a human serum albumin based high-performance liquid chromatographic chiral stationary phase , 1991 .

[10]  E. Domenici,et al.  Synthesis and chromatographic properties of an HPLC chiral stationary phase based upon human serum albumin , 1990 .

[11]  P. Brooks,et al.  Structural requirements for drug binding to site II on human serum albumin. , 1983, Molecular pharmacology.